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⚫ Expensive data acquisition in complex physical engineering systems (i.e., small data)

⚫ − under partial information, making decisions

⚫ − lack of robustness and fail to convergence (albeit using state-of-the-art ML techniques)

⚫ Utilizing of prior knowledge 

⚫ Physical law (e.g., Newton’s laws)

⚫ Constraints the space of admissible solutions 

⚫ e.g., Abrogation of non-realistic solutions that violate the conservation law

Without prior knowledgeWith prior knowledge

𝐞. 𝐠. ,𝒎 ሷ𝒙 + 𝒄 ሶ𝒙 + 𝒌𝒙 = 𝟎

[Constraint of solutions space]
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⚫ Previous works

⚫ Gaussian process regression tailored to linear operator

⚫ − Local linearization of nonlinear terms → limited applications

⚫ − Inaccurate predictability in highly nonlinear regimes

⚫ Physics-informed neural networks

⚫ Neural networks as universal function approximators†

⚫ Automatic differentiation → ‘auto_grad’

⚫ + It can address the nonlinear problems.

† K. Hornik et al., Neural Networks, 1989
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⚫ Parametrized and nonlinear PDE of general form

⚫ It encapsulates a wide range of problems in math, physics including conservations laws, diffusion, and so on.

⚫ 𝑢 𝑡, 𝑥 : latent (hidden) solution

⚫ 𝒩 ⋅; 𝜆 : nonlinear operator parametrized by 𝜆

⚫ e.g., 1-D Burgers eq.

⚫ 𝑢𝑡 + 𝜆1𝑢𝑥 − 𝜆2𝑢𝑥𝑥 = 0 → 𝒩 𝑢; 𝜆 = 𝜆1𝑢𝑢𝑥 − 𝜆2𝑢𝑢𝑥𝑥 and 𝜆 = 𝜆1, 𝜆2

⚫ Algorithms

⚫ Data-driven solutions of PDE: model → data; Forward problem

⚫ Data-driven discovery of PDE: data → model; Inverse problem

𝑢𝑡 +𝒩 𝑢; 𝜆 = 0, 𝑥 ∈ Ω ⊂ ℝ𝐷, 𝑡 ∈ 0, 𝑇



Automatic differentiation

[PINN algorithm †]

Function approximators

ℒ = 𝜔IC/BCℒIC/BC + 𝜔PDEℒPDE

ℒIC/BC =
1

𝑁IC/BC
෍

𝑖=1

𝑁IC/BC
𝑢 𝑥𝑖 , 𝑡𝑖 − 𝑢𝑖

2

ℒP𝐷𝐸 =
1

𝑁PDE
෍

𝑗=1

𝑁PDE
ቚ𝑢𝑡 + 𝑢𝑢𝑥 − 𝜈𝑢𝑥𝑥

2

𝑥𝑗,𝑡𝑗
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⚫ Data-driven solutions (Forward problems)

⚫ e.g., 𝑢𝑡 + 𝑢𝑢𝑥 = 𝜈𝑢𝑥𝑥

† G. E. Karniadakis et al., Nature Reviews Physics, 2021
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⚫ Data-driven solutions

⚫ 𝑓 ≔ 𝑢𝑡 +𝒩 𝑢 → 𝑓 = 0

⚫ Loss functions ℒ = ℒ𝑢 + ℒ𝑓

⚫ ℒ𝑢 =
1

𝑁𝑢
σ𝑖=1
𝑁𝑢 𝑢 𝑥𝑖 , 𝑡𝑖 − 𝑢𝑖

2 where 𝑥𝑖 , 𝑡𝑖 is sampled points at the initial/boundary locations

⚫ ℒ𝑓 =
1

𝑁𝑓
σ
𝑗=1

𝑁𝑓
𝑓 𝑥𝑗 , 𝑡𝑗

2
where 𝑥𝑗 , 𝑡𝑗 is sampled points in the entire domain (≔ collocation points)

𝑢𝑡 +𝒩 𝑢; 𝜆 = 0, 𝑥 ∈ Ω ⊂ ℝ𝐷, 𝑡 ∈ 0, 𝑇

† S. Lin & Y. Chen, Journal of Computational Physics, 2022

[Schematic diagrams †]

Initial condition, 𝑢 𝑥, 0 = 𝛼 Boundary condition, 𝑢 𝑥0, 𝑡 = 𝛽0, 𝑢 𝑥1, 𝑡 = 𝛽1

Collocation points
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⚫ Data-driven solutions

⚫ Small number of training dataset, 𝑁𝑢

⚫ e.g., initial / boundary condition

⚫ Loss function is optimized using L-BFGS, full-batch.

⚫ No theoretical guarantee that it converges to a global minimum, but if the PDE has unique solution 

→ Accurate prediction with sufficient number of collocation points, 𝑁𝑓

[Predicted solution ℎ 𝑡, 𝑥 ] [Comparison of predicted and exact solution]



Automatic differentiation

[PINN algorithm †]

Function approximators

ℒ = 𝜔IC/BCℒIC/BC + 𝜔PDEℒPDE +𝝎𝐃𝐀𝐓𝐀𝓛𝐃𝐀𝐓𝐀

ℒIC/BC =
1

𝑁IC/BC
෍

𝑖=1

𝑁IC/BC
𝑢 𝑥𝑖 , 𝑡𝑖 − 𝑢𝑖

2

ℒP𝐷𝐸 =
1

𝑁PDE
෍

𝑗=1

𝑁PDE
ቚ𝑢𝑡 + 𝑢𝑢𝑥 − 𝜈𝑢𝑥𝑥

2

𝑥𝑗,𝑡𝑗

𝓛𝐃𝐀𝐓𝐀 =
𝟏

𝑵𝐃𝐀𝐓𝐀
෍

𝒌=𝟏

𝑵𝐃𝐀𝐓𝐀
𝒖 𝒙𝒌, 𝒕𝒌 − 𝒖𝒌

𝟐
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⚫ Data-driven discovery (Inverse problems)

⚫ e.g., 𝑢𝑡 + 𝜆1𝑢𝑥 = 𝜆2𝑢𝑥𝑥

† G. E. Karniadakis et al., Nature Reviews Physics, 2021
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⚫ Data-driven discovery

⚫ e.g., 2D Navier-Stokes Equations given datasets 𝑥𝑖 , 𝑦𝑖 , 𝑢𝑖 , 𝑣𝑖 , 𝑡𝑖 𝑖=1
𝑁

⚫ 𝑢𝑡 + 𝜆1 𝑢𝑢𝑥 + 𝑣𝑢𝑦 = −𝑝𝑥 + 𝜆2 𝑢𝑥𝑥 + 𝑢𝑦𝑦 → 𝑓 = 𝑢𝑡 + 𝜆1 𝑢𝑢𝑥 + 𝑣𝑢𝑦 − 𝑝𝑥 − 𝜆2 𝑢𝑥𝑥 + 𝑢𝑦𝑦

⚫ 𝑣𝑡 + 𝜆1 𝑢𝑣𝑥 + 𝑣𝑣𝑦 = −𝑝𝑦 + 𝜆2 𝑣𝑥𝑥 + 𝑣𝑦𝑦 → 𝑔 = 𝑣𝑡 + 𝜆1 𝑢𝑣𝑥 + 𝑣𝑣𝑦 − 𝑝𝑦 − 𝜆2 𝑣𝑥𝑥 + 𝑣𝑦𝑦

⚫ 𝑢𝑥 + 𝑣𝑦 = 0

⚫ Loss functions ℒ = ℒ𝑢 + ℒ𝑣 + ℒ𝑓 + ℒ𝑔

⚫ ℒ𝑢 =
1

𝑁
σ𝑖=1
𝑁 𝑢 𝑥𝑖 , 𝑦𝑖 , 𝑡𝑖 − 𝑢𝑖

2 and ℒ𝑣 =
1

𝑛
σ𝑖=1
𝑁 𝑣 𝑥𝑖 , 𝑦𝑖 , 𝑡𝑖 − 𝑣𝑖

2

⚫ ℒ𝑓 =
1

𝑁
σ𝑖=1
𝑁 𝑓 𝑥𝑖 , 𝑦𝑖 , 𝑡𝑖

2 and ℒ𝑔 =
1

𝑁
σ𝑖=1
𝑁 𝑔 𝑥𝑖 , 𝑦𝑖 , 𝑡𝑖

2

⚫ Scattered and noisy data 𝑢, 𝑣 → unknown parameters 𝜆1, 𝜆2 and pressure filed 𝑝 𝑥, 𝑦, 𝑡

𝑢𝑡 +𝒩 𝑢; 𝜆 = 0, 𝑥 ∈ Ω ⊂ ℝ𝐷, 𝑡 ∈ 0, 𝑇
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⚫ Data-driven discovery

⚫ Larger training dataset, 𝑁𝑢

⚫ e.g., CFD simulation results and experimental data

⚫ Loss function is optimized using mini-batch.

[Simulation results] [Locations of training data-points for 𝑢 𝑥, 𝑦, 𝑡 and 𝑣 𝑥, 𝑦, 𝑢 ]
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⚫ Data-driven discovery

⚫ Larger training dataset, 𝑁𝑢

⚫ e.g., CFD simulation results and experimental data

⚫ Loss function is optimized using mini-batch.

[Top: comparison of predicted and exact pressure, Bottom: comparison of PDEs]
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⚫ Contribution

⚫ Physics-informed NN, a new class of universal function approximators that can reflect underlying physical laws 

is introduced.

⚫ Two algorithms are suggested.

⚫ Solutions to general nonlinear PDEs are inferred. (Forward problem)

⚫ Efficient physics-informed surrogate model is constructed. (Inverse problem)
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⚫ Contribution

[Relation data and physics †]

Only data available are initial/boundary conditions.

Specific governing PDEs and associated 

parameters are precisely known.

Available many data

Forward problem Original data-driven approach

Governing physical law is not be known.

Majority of Real applications

Inference of parameters and missing functional terms in PDE 

while simultaneously recovering the solution

Inverse problem

† G. E. Karniadakis et al., Nature Reviews Physics, 2021
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⚫ Contribution

⚫ Physics-informed NN, a new class of universal function approximators that can reflect underlying physical laws 

is introduced.

⚫ Two algorithms are suggested.

⚫ Solutions to general nonlinear PDEs are inferred. (Forward problem)

⚫ Efficient physics-informed surrogate model is constructed. (Inverse problem)

⚫ Future works

⚫ How deep/wide should the a NN be?, How much data is needed?

⚫ Why is the algorithms not suffering from local optima for the parameters of the differential operator?

⚫ Does the network suffer from vanishing gradients for high-order differential operators?, 

Could this be mitigated by using different activation function?

⚫ Are the MSE and SSE the appropriate loss functions?
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⚫ Fundamental Issue

⚫ Bad convergence at discontinuity point and singularity

⚫ Weak form: differential equations → integral equations

⚫ Domain decomposition: multiple sub-domain with separate neural networks

⚫ Neural Networks Issue

⚫ Unbalanced/non-defined loss optimization

⚫ ℒ = 𝜔𝑓ℒ𝑓 + 𝜔𝑔ℒ𝑔 + 𝜔ℎℒℎ +⋯+ 𝜔ICℒIC

⚫ Normalization

⚫ Adaptive loss weights

[Diagram in case of aerospace]

[Numerical simulation of underwater explosions]
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