Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations

Raissi, M., Perdikaris, P., & Karniadakis, G. E.

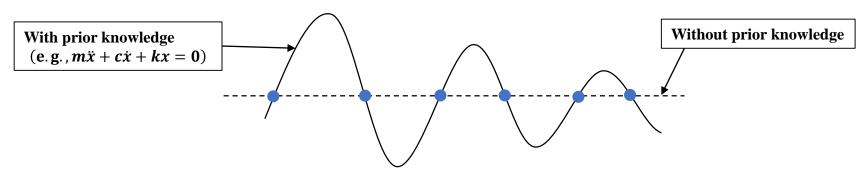
Journal of Computational Physics (JCP), 2019

2023. 01. 10

Seonghak KIM

Introduction

- Expensive data acquisition in complex physical engineering systems (i.e., small data)
 - (−) under partial information, making decisions
 - (-) lack of robustness and fail to convergence (albeit using state-of-the-art ML techniques)
- Utilizing of prior knowledge
 - Physical law (e.g., Newton's laws)
 - Constraints the space of admissible solutions
 - e.g., Abrogation of non-realistic solutions that violate the conservation law



Introduction

Previous works

- Gaussian process regression tailored to linear operator
 - (−) Local linearization of nonlinear terms → limited applications
 - (–) Inaccurate predictability in highly nonlinear regimes

Physics-informed neural networks

- Neural networks as universal function approximators[†]
 - Automatic differentiation → 'auto_grad'
 - (+) It can address the nonlinear problems.

Parametrized and nonlinear PDE of general form

• It encapsulates a wide range of problems in math, physics including conservations laws, diffusion, and so on.

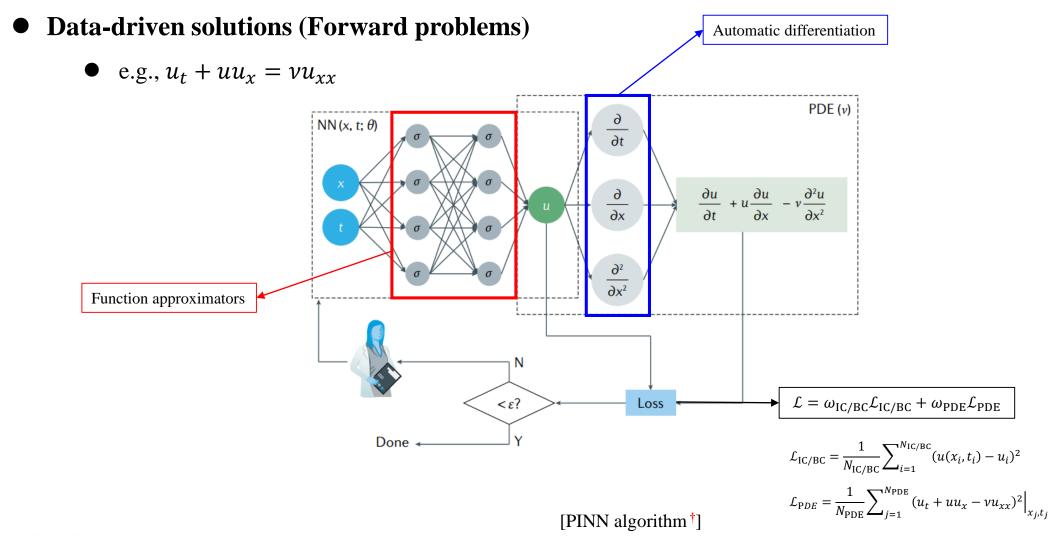
$$u_t + \mathcal{N}[u; \lambda] = 0, x \in \Omega \subset \mathbb{R}^D, t \in [0, T]$$

- u(t,x): latent (hidden) solution
- $\mathcal{N}(\cdot; \lambda)$: nonlinear operator parametrized by λ
- e.g., 1-D Burgers eq.

•
$$u_t + \lambda_1 u_x - \lambda_2 u_{xx} = 0 \rightarrow \mathcal{N}(u; \lambda) = \lambda_1 u u_x - \lambda_2 u u_{xx}$$
 and $\lambda = (\lambda_1, \lambda_2)$

Algorithms

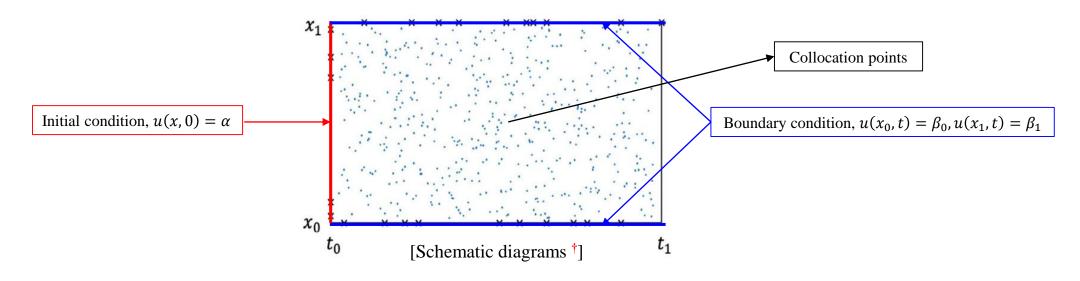
- Data-driven solutions of PDE: model → data; Forward problem
- Data-driven discovery of PDE: data → model; *Inverse problem*



 $u_t + \mathcal{N}[u; \lambda] = 0, x \in \Omega \subset \mathbb{R}^D, t \in [0, T]$

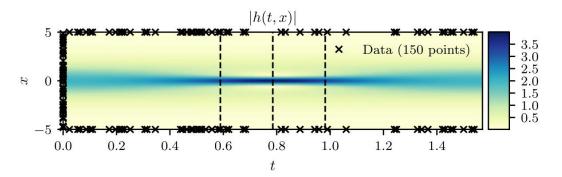
Data-driven solutions

- $f \coloneqq u_t + \mathcal{N}[u] \to f = 0$
- Loss functions $\mathcal{L} = \mathcal{L}_u + \mathcal{L}_f$
 - $\mathcal{L}_u = \frac{1}{N_u} \sum_{i=1}^{N_u} (u(x_i, t_i) u_i)^2$ where (x_i, t_i) is sampled points at the initial/boundary locations
 - $\mathcal{L}_f = \frac{1}{N_f} \sum_{j=1}^{N_f} f(x_j, t_j)^2$ where (x_j, t_j) is sampled points in the entire domain (\coloneqq collocation points)

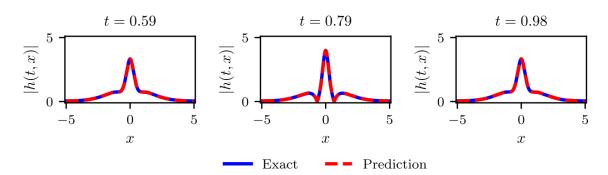


Data-driven solutions

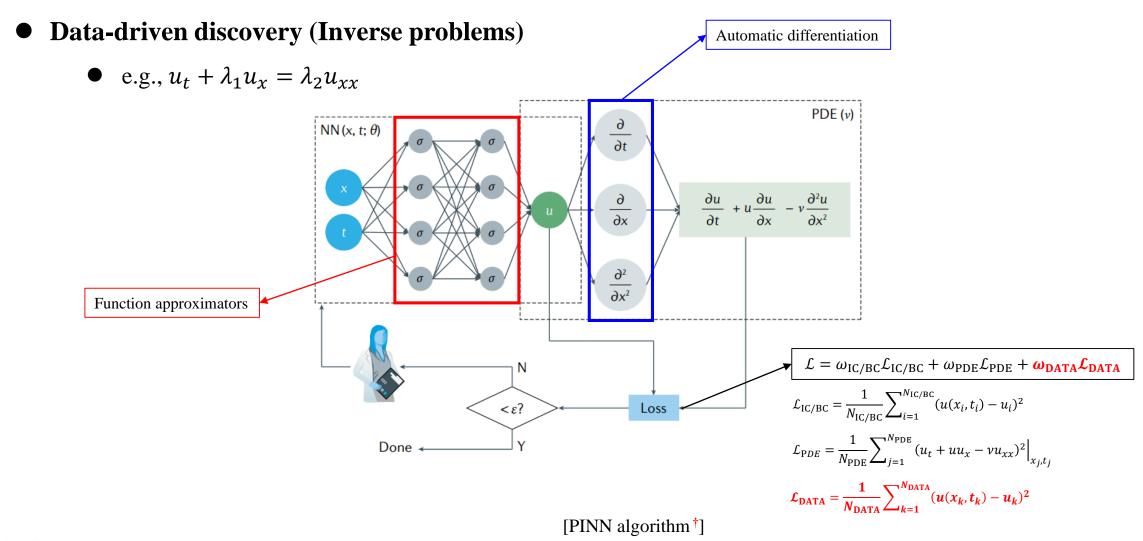
- Small number of training dataset, N_u
 - e.g., initial / boundary condition
- Loss function is optimized using L-BFGS, full-batch.
- No theoretical guarantee that it converges to a global minimum, but if the PDE has unique solution
 - \rightarrow Accurate prediction with sufficient number of collocation points, N_f



[Predicted solution |h(t, x)|]



[Comparison of predicted and exact solution]



 $u_t + \mathcal{N}[u; \lambda] = 0, x \in \Omega \subset \mathbb{R}^D, t \in [0, T]$

Data-driven discovery

• e.g., 2D Navier-Stokes Equations given datasets $\{x_i, y_i, u_i, v_i, t_i\}_{i=1}^N$

•
$$u_t + \lambda_1(uu_x + vu_y) = -p_x + \lambda_2(u_{xx} + u_{yy}) \rightarrow f = u_t + \lambda_1(uu_x + vu_y) - p_x - \lambda_2(u_{xx} + u_{yy})$$

•
$$v_t + \lambda_1(uv_x + vv_y) = -p_y + \lambda_2(v_{xx} + v_{yy}) \rightarrow g = v_t + \lambda_1(uv_x + vv_y) - p_y - \lambda_2(v_{xx} + v_{yy})$$

- $\bullet \quad u_x + v_y = 0$
- Loss functions $\mathcal{L} = \mathcal{L}_u + \mathcal{L}_v + \mathcal{L}_f + \mathcal{L}_q$

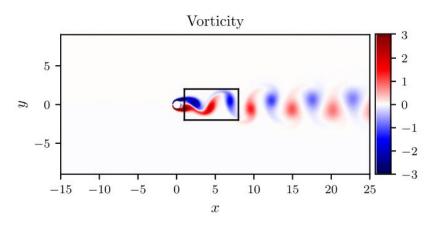
•
$$\mathcal{L}_u = \frac{1}{N} \sum_{i=1}^{N} (u(x_i, y_i, t_i) - u_i)^2$$
 and $\mathcal{L}_v = \frac{1}{n} \sum_{i=1}^{N} (v(x_i, y_i, t_i) - v_i)^2$

•
$$\mathcal{L}_f = \frac{1}{N} \sum_{i=1}^{N} f(x_i, y_i, t_i)^2$$
 and $\mathcal{L}_g = \frac{1}{N} \sum_{i=1}^{N} g(x_i, y_i, t_i)^2$

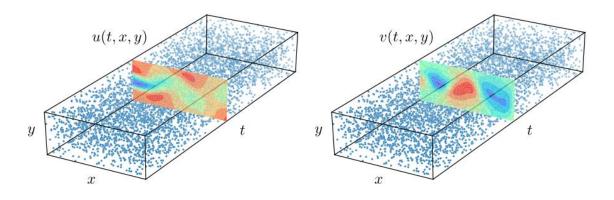
• Scattered and noisy data $(u, v) \rightarrow$ unknown parameters (λ_1, λ_2) and pressure filed p(x, y, t)

Data-driven discovery

- Larger training dataset, N_u
 - e.g., CFD simulation results and experimental data
- Loss function is optimized using mini-batch.



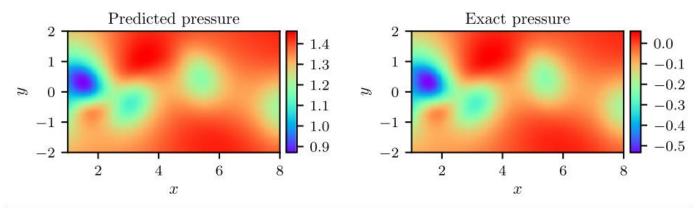
[Simulation results]



[Locations of training data-points for u(x, y, t) and v(x, y, u)]

Data-driven discovery

- Larger training dataset, N_u
 - e.g., CFD simulation results and experimental data
- Loss function is optimized using mini-batch.



Correct PDE	$u_t + (uu_x + vu_y) = -p_x + 0.01(u_{xx} + u_{yy})$ $v_t + (uv_x + vv_y) = -p_y + 0.01(v_{xx} + v_{yy})$
Identified PDE (clean data)	$u_t + 0.999(uu_x + vu_y) = -p_x + 0.01047(u_{xx} + u_{yy})$ $v_t + 0.999(uv_x + vv_y) = -p_y + 0.01047(v_{xx} + v_{yy})$
Identified PDE (1% noise)	$u_t + 0.998(uu_x + vu_y) = -p_x + 0.01057(u_{xx} + u_{yy})$ $v_t + 0.998(uv_x + vv_y) = -p_y + 0.01057(v_{xx} + v_{yy})$

[Top: comparison of predicted and exact pressure, Bottom: comparison of PDEs]

Conclusions

Contribution

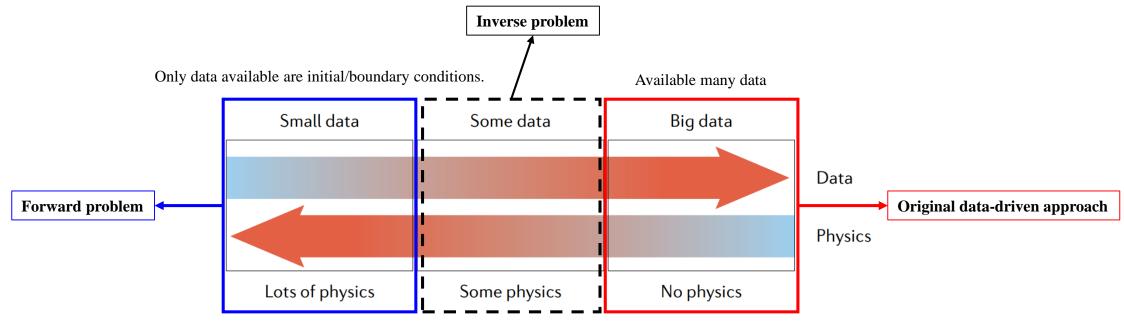
- Physics-informed NN, a new class of universal function approximators that can reflect underlying physical laws is introduced.
- Two algorithms are suggested.
 - Solutions to general nonlinear PDEs are inferred. (Forward problem)
 - Efficient physics-informed surrogate model is constructed. (Inverse problem)

Conclusions

Contribution

Majority of Real applications

Inference of parameters and missing functional terms in PDE while simultaneously recovering the solution



Specific governing PDEs and associated parameters are precisely known.

Governing physical law is not be known.

[Relation data and physics †]

Conclusions

Contribution

- Physics-informed NN, a new class of universal function approximators that can reflect underlying physical laws is introduced.
- Two algorithms are suggested.
 - Solutions to general nonlinear PDEs are inferred. (Forward problem)
 - Efficient physics-informed surrogate model is constructed. (Inverse problem)

Future works

- How deep/wide should the a NN be?, How much data is needed?
- Why is the algorithms not suffering from local optima for the parameters of the differential operator?
- Does the network suffer from vanishing gradients for high-order differential operators?,
 Could this be mitigated by using different activation function?
- Are the MSE and SSE the appropriate loss functions?

General Limitation of PINN

Fundamental Issue

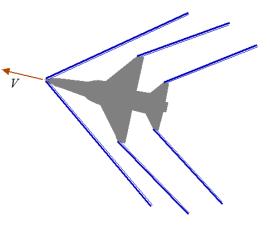
- Bad convergence at discontinuity point and singularity
 - Weak form: differential equations \rightarrow integral equations
 - Domain decomposition: multiple sub-domain with separate neural networks

Neural Networks Issue

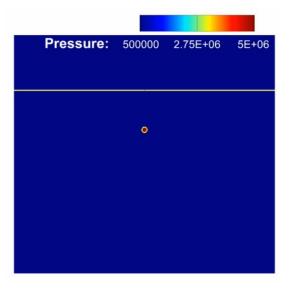
Unbalanced/non-defined loss optimization

$$\bullet \quad \mathcal{L} = \omega_f \mathcal{L}_f + \omega_g \mathcal{L}_g + \omega_h \mathcal{L}_h + \dots + \omega_{\text{IC}} \mathcal{L}_{\text{IC}}$$

- Normalization
- Adaptive loss weights



[Diagram in case of aerospace]



[Numerical simulation of underwater explosions]

Thank you

