Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems
Involving nonlinear partial differential equations
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Introduction

® Expensive data acquisition in complex physical engineering systems (i.e., small data)
® (—) under partial information, making decisions

® (—) lack of robustness and fail to convergence (albeit using state-of-the-art ML techniques)

® Utilizing of prior knowledge
® Physical law (e.g., Newton’s laws)

® Constraints the space of admissible solutions

® e.g., Abrogation of non-realistic solutions that violate the conservation law

With prior knowledge Without prior knowledge

(e.g. mx+cx+ kx=0)

[Constraint of solutions space]
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Introduction

® Previous works

® Gaussian process regression tailored to linear operator
® (—) Local linearization of nonlinear terms - limited applications

® (—) Inaccurate predictability in highly nonlinear regimes

® Physics-informed neural networks

® Neural networks as universal function approximators’
® Automatic differentiation - ‘auto_grad’

® (+) It can address the nonlinear problems.
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Models

® Parametrized and nonlinear PDE of general form

® It encapsulates a wide range of problems in math, physics including conservations laws, diffusion, and so on.

u + N[u; 1] =0,x € Qc RP,t € [0,T]

® u(t,x): latent (hidden) solution

® V' (-; A): nonlinear operator parametrized by A
® ec.9., 1-D Burgers eq.
® u + AU, — AUy =0-> N A) = Luu, — Auu,, and A = (A4, 1,)

® Algorithms
® Data-driven solutions of PDE: model - data; Forward problem

® Data-driven discovery of PDE: data = model; Inverse problem
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Models

® Data-driven solutions (Forward problems) / Automatic differentiation

® €.0., U + UUy = VlUyy

B PDE (1)
at :
9 du o, u _ ou
ox ot ax o |
& |
: . I i
Function approximators |
Loss > L = wic/cLic/c + WppELPDE
Done Y 1 Nic/BC
_ ) — w2
LIC/BC = NIC/BCZi=1 (i, t) —wy)

1 NppE
Lppp = —— (U + ULy, — Viyy)?
PDE = t x xXx
PDE j=1 Xjtj

[PINN algorithm 7]
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Models

® Data-driven solutions

® f=u,+N[ul-f=0
® Loss functions L = £, + L

KAIST

u + Nu; Al =0,x€e Qc R, t € [0,T]

® [, = Niuzlivjl(u(xi, t;) — u;)% where (x;, t;) is sampled points at the initial/boundary locations

_ 1 Ng 2 . . . . . L . .
® [;= N—f2j=1f(xj, t;)” where (x;, t;) is sampled points in the entire domain (:= collocation points)
X1 e Mt o —
S Collocation points
Initial condition, u(x, 0) = a > Boundary condition, u(xo, t) = B, u(xy,t) = B4
X( i x
to ty

[Schematic diagrams ]
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Models

® Data-driven solutions
® Small number of training dataset, N,
® e.g., initial / boundary condition
® L oss function is optimized using L-BFGS, full-batch.
® No theoretical guarantee that it converges to a global minimum, but if the PDE has unique solution
= Accurate prediction with sufficient number of collocation points, N¢

Data (150 points)

O NN WW
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|h(t, )|
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|h(t, )]

=) o

| E%==-
|h(t, z)|

o o

m— Fxact == = Prediction

[Predicted solution |h(t, x)|] [Comparison of predicted and exact solution]

KAIST .




Models

® Data-driven discovery (Inverse problems) / Automatic differentiation

® 0., U +Au, = AU,y

Function approximators

____________________

L = wic/scLic/sc + wppeLppE + @WpaTaLpata

1 Nic/BC )
Lic/pc = E (ulx, ty) —uy)
Nic/Bc =i=1

1 NppE
Done Y Lppg = Z (ue + uuy — Vuxx)2|

NPDE j=1 Xjtj

1 Npata
Lpata = Z (u(xg, ty) — up)?
Npata L~k=1

[PINN algorithm 7]
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Models

u + Nu; Al =0,x€e Qc R, t € [0,T]

® Data-driven discovery
® c.g., 2D Navier-Stokes Equations given datasets {x;, y;, u;, v;, t; 14
® u, + 2 (uu,+ vuy) = —py + A (U + uyy) = f =up + A, (uu, + vuy) — Dy — g (Upeye + uyy)
® v, + A (uv + vvy) =-py+ 1 (Ve + vyy) > g =v; + A1 (uv, + vvy) — Py — Ao (vnx + vyy)
® u +v,=0
® Lossfunctions L =L, + L, +Ls+ L,
® L,=—3N (ulryit) —u)?and £, = - NN, (wlx; i, t;) — v;)?
® =3V flypt)? and Lo =¥, g(x, v t)?

® Scattered and noisy data (u, v) = unknown parameters (14, 4,) and pressure filed p(x, y, t)
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Models

® Data-driven discovery

® Larger training dataset, N,
® c.g., CFD simulation results and experimental data

® [ oss function is optimized using mini-batch.

Vorticity

[Simulation results] [Locations of training data-points for u(x, y, t) and v(x, y,u)]
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Models

® Data-driven discovery

® Larger training dataset, N,

® c.g., CFD simulation results and experimental data

® [ oss function is optimized using mini-batch.

5 Predicted pressure

"

Exact pressure
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Correct PDE

up + (uug + vuy) = —pp + 0.01(ugy + uyy)
Ui + (uve+ovy) = —py + 0.0 (Ve +vyy)

Identified PDE (clean data)

uy + 0.999(uu, + vu —pz + 0.01047 (ugy + wyy)

Identified PDE (1% noise)

y
v + 0.999(uv, + (O =py + 0.01047(v25 + vyy)
u + 0.998(uu, + vuy, —Pa + 0.01057 (tgy + yy)
vt + 0.998(uv, + vu, —py + 0.01057(vey + vyy)

)
)
)
)
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[Top: comparison of predicted and exact pressure, Bottom: comparison of PDEs]
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Conclusions

® Contribution

® Physics-informed NN, a new class of universal function approximators that can reflect underlying physical laws
Is introduced.

® Two algorithms are suggested.
® Solutions to general nonlinear PDEs are inferred. (Forward problem)

® Efficient physics-informed surrogate model is constructed. (Inverse problem)
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Conclusions

Majority of Real applications

_______________________________________________

® Contribution i Inference of parameters and missing functional terms in PDE
! while simultaneously recovering the solution

Inverse problem

Only data available are initial/boundary conditions. Available many data
el |
Small data Some data | Big data
I
Data
Forward problem < | » Original data-driven approach
: Physics
:
Lots of physics : Some physics I No physics
———————— -l
Specific governing PDEs and associated Governing physical law is not be known.

parameters are precisely known.

[Relation data and physics ]
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Conclusions

® Contribution
® Physics-informed NN, a new class of universal function approximators that can reflect underlying physical laws
Is introduced.

® Two algorithms are suggested.
® Solutions to general nonlinear PDEs are inferred. (Forward problem)

® Efficient physics-informed surrogate model is constructed. (Inverse problem)

® Future works
® How deep/wide should the a NN be?, How much data is needed?
® \Why is the algorithms not suffering from local optima for the parameters of the differential operator?
® Does the network suffer from vanishing gradients for high-order differential operators?,
Could this be mitigated by using different activation function?

® Are the MSE and SSE the appropriate loss functions?
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General Limitation of PINN

® Fundamental Issue

® Bad convergence at discontinuity point and singularity

® \Neak form: differential equations = integral equations

® Domain decomposition: multiple sub-domain with separate neural networks

® Neural Networks Issue [Diagram in case of aerospace]

® Unbalanced/non-defined loss optimization HE =

Pressure: 500000 2.75E+06 5E+06
® [ = a)fo + (A)ng + a)th + -+ (1)1(:1:1(:

® Normalization

® Adaptive loss weights

[Numerical simulation of underwater explosions]
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Thank you
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