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⚫ Interface method

⚫ Sharp interface method (SIM)

⚫ Interface is considered as a sharp discontinuity.

⚫ Lagrangian type

⚫ When fluid flows, Unbounded deformation and mesh distortions → Unpractical

⚫ Eulerian type

⚫ A fixed mesh with an additional equation for tracking and reconstructing the interface

⚫ Volume of fluid (VOF) – it is different from homogenous mixture model.

• the cells are occupied by each volume fraction (𝛼), transport with the flow.

⚫ Level-set equation

• At the interface the number is set as zero, and far from the interface the numbers are positive or negative.

• With large pressure and density ratios, the interface can be not obvious.

• Mixture momentum and energy are not conserved.

⚫ Front tracking method

• Interfaces is explicitly tracked.

⚫ Limitations

⚫ It can’t create interface that are not present initially as gas pockets in cavitating flows.

⚫ It can’t solve interfaces separating pure fluids and mixture.

Multiphase model study
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⚫ Interface method

⚫ Diffuse interface method (DIM) – Our Framework

⚫ Interfaces is considered as artificial mixture s created by numerical diffusion.

⚫ Challenge

⚫ Physically, mathematically and numerically consistent thermodynamic laws for the artificial mixture

⚫ Advantages

⚫ The same algorithm in both pure fluids and mixture

⚫ it can create interfaces that are not present initially in contrast to SIM.

⚫ It can deal with interfaces separating pure fluids and mixtures as condensed explosive.

⚫ Hyperbolic multiphase flow models such as total non-eq. model or mechanical eq. model.

Multiphase model study
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⚫ Phase change phenomenon

⚫ Cavitation

⚫ Superheated liquid in metastable releases internal energy (metastable energy)

⚫ Producing pure vapour or vapour-liquid mixture (if retrograde); cavitation ➔ Strong disturbance

⚫ Associated experiment (Simoes-Moreira & Shepherd, 1999)

⚫ It have to be considered that liquid and vapour are compressible. (∵ wave propagation - rarefaction, shock, etc.)

⚫ In real situation, rarefaction can be occur due to geometrical effect (ex. Nozzle, etc.)

Multiphase model study
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⚫ Multiphase model

⚫ Have to ability to deal with

⚫ Interfaces of simple contact (non-condensable gas – water interface, no mass transfer)

⚫ Evaporating interfaces (vapour – water interface, mass transfer that occur under 𝑻ℓ > 𝑻𝒔𝒂𝒕)
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⚫ Multiphase model

⚫ Relaxation time scales

⚫ Dependent on many parameter of the fluids

⚫ Pressure relaxation time (∝ 1/𝜇)

⚫ Compressibility of the fluids

⚫ Two phase mixture topology

⚫ Velocity relaxation time (∝ 1/𝜆)

⚫ Fluid viscosity

⚫ Pressure relaxation process

⚫ Temperature relaxation time (∝ 1/𝐻)

⚫ Thermal conductivity of the fluids (arise from the collisions of the molecules of the fluids)

→ For temperature equilibrium, a large number of collisions is required.

⚫ Gibbs free energy relaxation time (∝ 1/𝜈)

⚫ Local chemical relaxation

⚫ Order of relaxation time

⚫ Pressure (𝟏/𝝁) ≤ velocity (𝟏/𝝀) ≪ temperature (𝟏/𝑯) ≪ Gibbs free energy (𝟏/𝝂)

➔ In many physical situations, pressure and velocity relax instantaneously. (𝑝, 𝒗 equilibrium) 

7
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⚫ Multiphase model

⚫ Order of relaxation time

⚫ Validity of temperature equilibrium 

⚫ In gaseous detonation model, molecular collisions are so intense. → temperature equilibrium.

⚫ For detonations in heterogeneous explosives, molecular collisions aren’t sufficient (mixing is at not molecular scale)

→ temperature non-equilibrium.

➔ “Spark generated UNDEX” that is our goal can be considered as “gaseous detonation model” because mixture zone with 

cavitation occurring at interfaces is at molecular scale .

8
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⚫ Multiphase model

⚫ P-T equilibrium model

⚫ Mixture Euler eq. with a cubic EOS (ex. Vdw EOS, etc.)

⚫ A cubic EOS cause a loss of hyperbolicity in the spinodal region.

➔The squared sound speed may become negative and wave propagation has no physical meaning.

⚫ Mixture Euler eq. with a tabular EOS or a combination of pure phase EOSs (𝑝 − 𝑇 − 𝜇 relaxation) – 3 eq.

⚫ No loss of hyperbolicity (∵ not use cubic EOS)

⚫ No metastable states

⚫ Unable to deal with interfaces between a liquid and non-condensable gas

⚫ Mixture Euler eq. + mass fraction eq. with a relaxation term ( ሶ𝑚) – 4 eq.

⚫ Unable to deal with interfaces between a liquid and non-condensable gas

(∵ not isothermal state at interface between a liquid and ncgas (𝑇𝑔 ≠ 𝑇ℓ))

⚫ T non-equilibrium model

⚫ Five equation model (𝑝 − 𝒗 relaxation)

⚫ Unconditionally hyperbolic

⚫ Two mass eq. + one mixture momentum eq. + one mixture energy eq. + advection eq. for volume fraction

⚫ Six equation models (𝑝 relaxation)

⚫ Advection eq. for volume fraction + two mass eq. + two energy eq. + one mixture momentum eq.

⚫ Seven equation models (non-equilibrium)

⚫ Unconditionally hyperbolic

⚫ Balance eq. of mass, momentum and energy of each fluid + advection eq. for volume fraction

Multiphase model study
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⚫ 7 equation model (non-equilibrium model) of Baer-Nunziato

⚫ Volume fraction eq.

⚫ Each phase’s balance eq. (k = 1,2)

Multiphase model study

𝜕𝛼1
𝜕𝑡

+ 𝒖𝑰 ⋅ ∇𝛼1 = 𝜇 𝑝1 − 𝑝2

𝜕𝛼1𝜌1
𝜕𝑡

+ div 𝛼1𝜌1𝒖𝟏 = 0

𝜕𝛼1𝜌1𝒖𝟏
𝜕𝑡

+ div 𝛼1𝜌𝑘𝒖𝒌 × 𝒖𝒌 + ∇ 𝛼1𝑝1 = 𝑝𝐼∇𝛼1 + 𝜆 𝒖𝟐 − 𝒖𝟏 = 0

𝜕𝛼1𝜌1𝐸1
𝜕𝑡

+ div 𝛼1 𝜌1𝐸1 + 𝑝1 𝒖𝟏 = 𝑝𝐼𝒖𝑰 ⋅ ∇𝛼1 + 𝜆𝒖𝑰 ⋅ 𝒖𝟐 − 𝒖𝟏 + 𝑝𝐼𝜇 𝑝2 − 𝑝1 +𝐻 𝑇2 − 𝑇1

𝜕𝛼2𝜌2
𝜕𝑡

+ div 𝛼2𝜌2𝒖𝟐 = 0

𝜕𝛼2𝜌2𝒖𝟐
𝜕𝑡

+ div 𝛼2𝜌𝑘𝒖𝒌 × 𝒖𝒌 + ∇ 𝛼2𝑝2 = 𝑝𝐼∇𝛼2 + 𝜆 𝒖𝟏 − 𝒖𝟐 = 0

𝜕𝛼2𝜌2𝐸2
𝜕𝑡

+ div 𝛼2 𝜌2𝐸2 + 𝑝2 𝒖𝟐 = 𝑝𝐼𝒖𝑰 ⋅ ∇𝛼2 + 𝜆𝒖𝑰 ⋅ 𝒖𝟏 − 𝒖𝟐 + 𝑝𝐼𝜇 𝑝1 − 𝑝2 + 𝐻(𝑇1 − 𝑇2)
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⚫ 7 equation model (non-equilibrium model)

⚫ Unconditionally hyperbolic

⚫ Characteristic wave speeds; 𝒖𝒌, 𝒖𝒌 + 𝒄𝒌, 𝒖𝒌 − 𝒄𝒌, 𝒖𝑰

⚫ Symmetric closure relations (Saurel 𝒆𝒕 𝒂𝒍. 2003)

⚫ Relaxation coefficients(𝜇, 𝜆) can be determined.

⚫ Under the continuous limit of the discrete two-phase flow

⚫ Z: acoustic impedance (𝑍 = 𝜌𝑐)

⚫ Interface variables

⚫ Saurel 𝑒𝑡 𝑎𝑙. (2003)

⚫ Baer & Nunziato (1986)

⚫ Under stiff mechanical relaxation (𝜇, 𝜆 → ∞), both interface variables can be inter-changeable.

Multiphase model study

𝜇 =
𝑆𝐼

𝑍1 + 𝑍2
, 𝜆 = 𝑍1𝑍2𝜇

𝑝𝐼 =
𝑍1𝑝2 + 𝑍2𝑝1
𝑍1 + 𝑍2

+ sign
𝜕𝛼1
𝜕𝑥

𝑢2 − 𝑢1 𝑍1𝑍2
𝑍1 + 𝑍2

, 𝑢𝐼 =
𝑍1𝑢1 + 𝑍2𝑢2
𝑍1 + 𝑍2

+ sign
𝜕𝛼1
𝜕𝑥

𝑝2 − 𝑝1
𝑍1 + 𝑍2

𝑝𝐼 = 𝑝1, 𝑢𝐼 = 𝑢2
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⚫ 7 equation model (non-equilibrium model)

⚫ Primitive variables

⚫ Volume fraction eq.

⚫ Each phase’s balance eq.

⚫ Γ𝐾: Gruneisen coefficient of phase k

Multiphase model study

𝜕𝛼1
𝜕𝑡

= −𝒖𝑰 ⋅ ∇𝛼1 + 𝜇 𝑝1 − 𝑝2

𝜕𝛼1𝜌1
𝜕𝑡

= −div 𝛼1𝜌1𝒖𝟏

𝜕𝒖𝟏
𝜕𝑡

= −𝒖𝟏 ⋅ 𝜵𝒖𝟏 −
1

𝜌1
𝛻𝑝1 +

𝑝𝐼 − 𝑝1
𝛼1𝜌1

∇𝛼1 +
𝜆

𝛼1𝜌1
𝒖𝟐 − 𝒖𝟏

𝜕𝑝1
𝜕𝑡

= −𝜌1𝑐1
2div 𝒖𝟏 +

Γ1
𝛼1

𝑝𝐼 − 𝜌1
2

𝜕𝑒1
𝜕𝜌1 𝑝1

𝒖𝑰 − 𝒖𝟏 ⋅ ∇𝛼1 + 𝜇
Γ1
𝛼1

𝑝𝐼 − 𝜌1
2

𝜕𝑒1
𝜕𝜌1 𝑝1

𝑝2 − 𝑝1 + 𝜆
Γ1
𝛼1

𝒖𝑰 − 𝒖𝟏 𝒖𝟐 − 𝒖𝟏 +
Γ1
𝛼1

𝐻 𝑇2 − 𝑇1

𝜕𝛼2𝜌2
𝜕𝑡

= −div 𝛼2𝜌2𝒖𝟐

𝜕𝒖𝟐
𝜕𝑡

= −𝒖𝟐 ⋅ 𝜵𝒖𝟐 −
1

𝜌2
𝛻𝑝2 +

𝑝𝐼 − 𝑝2
𝛼2𝜌2

∇𝛼2 +
𝜆

𝛼1𝜌1
𝒖𝟏 − 𝒖𝟐

𝜕𝑝2
𝜕𝑡

= −𝜌2𝑐2
2div 𝒖𝟐 +

Γ2
𝛼2

𝑝𝐼 − 𝜌2
2

𝜕𝑒2
𝜕𝜌2 𝑝2

𝒖𝑰 − 𝒖𝟐 ⋅ ∇𝛼2 + 𝜇
Γ2
𝛼2

𝑝𝐼 − 𝜌2
2

𝜕𝑒2
𝜕𝜌2 𝑝2

𝑝1 − 𝑝2 + 𝜆
Γ2
𝛼2

𝒖𝑰 − 𝒖𝟐 𝒖𝟏 − 𝒖𝟐 +
Γ2
𝛼2

𝐻 𝑇1 − 𝑇2

Γ𝑘 =
1

𝜌𝑘

𝜕𝑝𝑘
𝜕𝑒𝑘 𝜌𝑘
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⚫ 5 equation model (pressure-velocity relaxation model)

⚫ From the asymptotic limit of non-equilibrium multiphase model (7 eq.)

⚫ Asymptotic limit: the least effect term(or no meaning term) is removed.

⚫ In the limit of stiff mechanical relaxation 𝜇, 𝜆 1/𝜖 → ∞
⚫ Velocity and pressure reach equilibrium state (𝑝1 = 𝑝2 = 𝑝𝑒𝑞 , 𝒖𝟏 = 𝒖𝟐 = 𝒖𝒆𝒒)

⚫ Mixture density: 𝜌 = 𝛼1𝜌1 + 𝛼2𝜌2
⚫ Mixture total energy:

𝐸 =
𝛼1𝜌1
𝜌

𝐸1 +
𝛼2𝜌2
𝜌

𝐸2

⚫ Unconditionally hyperbolic

⚫ Characteristic wave speeds; 𝒖, 𝒖 + 𝒄𝒘, 𝒖 − 𝒄𝒘
1

𝜌𝑐𝑤
2 =

𝛼1

𝜌1𝑐1
2 +

𝛼2

𝜌2𝑐2
2

⚫ 𝑐𝑤(Wood speed of sound) has non-monotonic behavior versus volume fraction (𝛼) 

Multiphase model study

𝜕𝛼1
𝜕𝑡

+ 𝒖 ⋅ ∇𝛼1 =
𝛼1𝛼2 𝜌2𝑐2

2 − 𝜌1𝑐1
2

𝛼2𝜌1𝑐1
2 + 𝛼1𝜌2𝑐2

2 div 𝒖 +
𝛼1𝛼2

𝛼2𝜌1𝑐1
2 + 𝛼1𝜌2𝑐2

2

Γ1
𝛼1

+
Γ2
𝛼2

𝐻 𝑇2 − 𝑇1

𝜕𝛼1𝜌1
𝜕𝑡

+ div 𝛼1𝜌1𝒖 = 0,
𝜕𝛼2𝜌2
𝜕𝑡

+ div 𝛼2𝜌2𝒖 = 0

𝜕𝜌𝒖

𝜕𝑡
+ div 𝜌𝒖 × 𝒖 + ∇𝑝 = 0

𝜕𝜌𝐸

𝜕𝑡
+ div 𝒖 𝜌𝐸 + 𝑝 = 0
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⚫ 5 equation model (pressure-velocity relaxation model)

⚫ Effect of mass transfer

⚫ A finite rate of mass transfer

⚫ Determination for mass transfer ( ሶ𝒀), interface density (𝝆𝑰)
⚫ Entropy production eq.

Multiphase model study

𝜕𝛼1
𝜕𝑡

+ 𝒖 ⋅ ∇𝛼1 =
𝛼1𝛼2 𝜌2𝑐2

2 − 𝜌1𝑐1
2

𝛼2𝜌1𝑐1
2 + 𝛼1𝜌2𝑐2

2 div 𝒖 +
𝛼1𝛼2

𝛼2𝜌1𝑐1
2 + 𝛼1𝜌2𝑐2

2

Γ1
𝛼1

+
Γ2
𝛼2

𝐻 𝑇2 − 𝑇1 +
𝜌 ሶ𝒀

𝝆𝑰
𝜕𝛼1𝜌1
𝜕𝑡

+ div 𝛼1𝜌1𝒖 = 𝜌 ሶ𝑌

𝜕𝛼2𝜌2
𝜕𝑡

+ div 𝛼2𝜌2𝒖 = −𝜌 ሶ𝑌

𝜕𝜌𝒖

𝜕𝑡
+ div 𝜌𝒖 × 𝒖 + ∇𝑝 = 0

𝜕𝜌𝐸

𝜕𝑡
+ div 𝒖 𝜌𝐸 + 𝑝 = 0

ሶ𝑌𝑘
𝑑𝑠𝑘
𝑑𝑡

= ±
𝐻(𝑇2 − 𝑇1)

𝜌𝑇𝑘
±

ሶ𝑌𝑘 ℎ2 − ℎ1
Γ𝑘𝑇𝑘
𝛼𝑘

𝛼1
Γ1

+
𝛼2
Γ2

+
ሶ𝑌𝑘

𝑇𝑘
Γ1
𝛼1

+
Γ1
𝛼1

𝜌1𝑐1
2

𝛼1
+
𝜌2𝑐2

2

𝛼2
𝝆𝑰

−
𝑐1
2

𝛼1
+
𝑐2
2

𝛼2

by heat exchange

by pressure relaxation process caused by mass transfer

by mass transfer
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⚫ 5 equation model (pressure-velocity relaxation model)

⚫ Determination for mass transfer ( ሶ𝒀), interface density (𝝆𝑰)
⚫ Entropy production eq.

During mass transfer, pressure perturbations occurs. ( ሶ𝒎 ⟷ ∆𝒑)

→ wave propagation by pressure perturbations makes vapour phase (evaporation)

→ evaporation is a continuous phenomenon

→ waves that cause evaporation are necessarily weak (isentropic)

Multiphase model study

ሶ𝑌𝑘
𝑑𝑠𝑘
𝑑𝑡

= ±
𝐻(𝑇2 − 𝑇1)

𝜌𝑇𝑘
±

ሶ𝑌𝑘 ℎ2 − ℎ1
Γ𝑘𝑇𝑘
𝛼𝑘

𝛼1
Γ1

+
𝛼2
Γ2

+
ሶ𝑌𝑘

𝑇𝑘
Γ1
𝛼1

+
Γ1
𝛼1

𝜌1𝑐1
2

𝛼1
+
𝜌2𝑐2

2

𝛼2
𝝆𝑰

−
𝑐1
2

𝛼1
+
𝑐2
2

𝛼2

by pressure relaxation process caused by mass transfer

ሶ𝑌𝑘

𝑇𝑘
Γ1
𝛼1

+
Γ1
𝛼1

𝜌1𝑐1
2

𝛼1
+
𝜌2𝑐2

2

𝛼2
𝝆𝑰

−
𝑐1
2

𝛼1
+
𝑐2
2

𝛼2
= 0

𝝆𝑰 =

𝝆𝟏𝒄𝟏
𝟐

𝜶𝟏
+
𝝆𝟐𝒄𝟐

𝟐

𝜶𝟐
𝒄𝟏
𝟐

𝜶𝟏
+
𝒄𝟐
𝟐

𝜶𝟐
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⚫ 5 equation model (pressure-velocity relaxation model)

⚫ Determination for mass transfer ( ሶ𝒀), interface density (𝝆𝑰)
⚫ Thermodynamics 2nd law

⚫ 𝑇𝐼: interface temperature 

𝑇𝐼 =

Γ1𝑇1
𝛼1

+
Γ2𝑇2
𝛼2

Γ1
𝛼1

+
Γ2
𝛼2

(≥ 0)

⚫ ҧ𝑔𝑘: gibbs free energy

ҧ𝑔𝑘 = ℎ𝑘 −
𝑇1𝑇2
𝑇𝐼

𝑠𝑘

➔ To satisfy thermodynamics 2nd law, ሶ𝑌 have to be ሶ𝑌 = 𝜈 ത𝑔2 − ത𝑔1 where 𝜈 is a positive relaxation parameter 

that controls the rate at which the mixture relaxes to thermodynamic equilibrium.

Multiphase model study

𝐻 𝑇2 − 𝑇1
2

𝜌
+ ҧ𝑔2 − ҧ𝑔1 𝑇𝐼 ሶ𝑌 ≥ 0
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⚫ 5 equation model (pressure-velocity relaxation model)

⚫ Final form

⚫ Solution procedure

⚫ Hyperbolic solver (𝐻, 𝜈 = 0)

⚫ For locations far from the interfaces

⚫ Stiff thermo-chemical solver (𝐻, 𝜈 → ∞)

⚫ Near the interfaces (𝜖 ≤ 𝛼1 ≤ 1 − 𝜖), relaxation can be assumed as a considerable rate.

⚫ If interface is simple contact (water – non condensable gas), 𝐻, 𝜈 = 0

Multiphase model study

𝜕𝛼1
𝜕𝑡

+ 𝒖 ⋅ ∇𝛼1 =
𝛼1𝛼2 𝜌2𝑐2

2 − 𝜌1𝑐1
2

𝛼2𝜌1𝑐1
2 + 𝛼1𝜌2𝑐2

2 div 𝒖 +

𝛼1𝛼2

𝛼2𝜌1𝑐1
2 + 𝛼1𝜌2𝑐2

2

Γ1
𝛼1

+
Γ2
𝛼2

𝐻 𝑇2 − 𝑇1 + 𝜌𝜈 ത𝑔2 − ത𝑔1

𝑐1
2

𝛼1
+
𝑐2
2

𝛼2
𝜌1𝑐1

2

𝛼1
+
𝜌2𝑐2

2

𝛼2
𝜕𝛼1𝜌1
𝜕𝑡

+ div 𝛼1𝜌1𝒖 = 𝜌𝜈 ത𝑔2 − ത𝑔1

𝜕𝛼2𝜌2
𝜕𝑡

+ div 𝛼2𝜌2𝒖 = 𝜌𝜈 ത𝑔1 − ത𝑔2

𝜕𝜌𝒖

𝜕𝑡
+ div 𝜌𝒖 × 𝒖 + ∇𝑝 = 0

𝜕𝜌𝐸

𝜕𝑡
+ div 𝒖 𝜌𝐸 + 𝑝 = 0
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⚫ 5 equation model (pressure-velocity relaxation model)

⚫ Solution procedure

⚫ Hyperbolic solver (𝐻, 𝜈 = 0) with heat and mass transfer

➔At each time step, non-equilibrium flow field’s variables can be obtained.

⚫ Volume fraction equations is non-conservation form.

⚫ The Riemann problem can’t be solved because conventional shock relations aren’t be used. So, The conventional Godunov-

type schemes are not suitable.

⚫ The average of the volume fraction variable within a computational cell has no physical meaning.

(cf. Petitpas 𝒆𝒕 𝒂𝒍., 2007, Saurel 𝒆𝒕 𝒂𝒍., 2007)

Multiphase model study

𝜕𝛼1
𝜕𝑡

+ 𝒖 ⋅ ∇𝛼1 =
𝛼1𝛼2 𝜌2𝑐2

2 − 𝜌1𝑐1
2

𝛼2𝜌1𝑐1
2 + 𝛼1𝜌2𝑐2

2 div 𝒖

𝜕𝛼1𝜌1
𝜕𝑡

+ div 𝛼1𝜌1𝒖 = 0

𝜕𝛼2𝜌2
𝜕𝑡

+ div 𝛼2𝜌2𝒖 = 0

𝜕𝜌𝒖

𝜕𝑡
+ div 𝜌𝒖 × 𝒖 + ∇𝑝 = 0

𝜕𝜌𝐸

𝜕𝑡
+ div 𝒖 𝜌𝐸 + 𝑝 = 0

Non-conservative term
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⚫ 5 equation model (pressure-velocity relaxation model)

⚫ Solution procedure

⚫ Stiff thermo-chemical solver (𝐻, 𝜈 → ∞), ODEs

➔ It solved at the interfaces between water and vapour only.

⚫ Closure relations for 𝑄(= 𝑓(𝐻, 𝑇)) and ሶ𝑌(= ℎ 𝜈, 𝑔 ) regarding relaxation parameter 𝐻 and 𝜈.

Where 𝐴, 𝐵, 𝐴′, 𝐵′ are functions of all flow variables and that dependent to specific EOS. (ex. SG EOS, etc)

Multiphase model study

𝜕𝛼1
𝜕𝑡

=
𝛼1𝛼2

𝛼2𝜌1𝑐1
2 + 𝛼1𝜌2𝑐2

2

Γ1
𝛼1

+
Γ2
𝛼2

𝑄 + 𝜌 ሶ𝑌

𝑐1
2

𝛼1
+
𝑐2
2

𝛼2
𝜌1𝑐1

2

𝛼1
+
𝜌2𝑐2

2

𝛼2

= 𝑺𝜶𝟏

𝜕𝛼1𝜌1
𝜕𝑡

= 𝜌 ሶ𝑌 = 𝑺𝒀,
𝜕𝛼2𝜌2
𝜕𝑡

= −𝜌 ሶ𝑌

𝜕𝜌𝒖

𝜕𝑡
= 0,

𝜕𝜌𝐸

𝜕𝑡
= 0

𝜕∆𝑇

𝜕𝑡
= 𝐴𝑄 + 𝐵 ሶ𝑌,

𝜕∆𝑔

𝜕𝑡
= 𝐴′𝑄 + 𝐵′ ሶ𝑌

∆𝑇 𝑛+1 − ∆𝑇 𝑛

∆𝑡
= 𝐴𝑛𝑄𝑛 + 𝐵𝑛 ሶ𝑌𝑛,

∆𝑔 𝑛+1 − ∆𝑔 𝑛

∆𝑡
= 𝐴′𝑛𝑄𝑛 + 𝐵′𝑛 ሶ𝑌𝑛
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⚫ 5 equation model (pressure-velocity relaxation model)

⚫ Solution procedure

⚫ Closure relations for 𝑄(= 𝑓(𝐻, 𝑇)) and ሶ𝑌(= ℎ 𝜈, 𝑔 ) regarding relaxation parameter 𝐻 and 𝜈.

⚫ The variables at time 𝑡𝑛 is obtained by the non-conservation hyperbolic solver.

⚫ Infinite relaxation → the equilibrium has to be reached at the end of each time step (∆𝑡) which imposed by CFL condition 

(explicit time scheme).

→ ∆𝑇 𝑛+1 = 0, ∆𝑔 𝑛+1 = 0

⚫ For preventing solution(𝛼, 𝑌) from stiff thermo-chemical solver to be negative,

If it not satisfy 𝑆𝑚𝑎𝑥,𝛼1 > 𝑆𝛼1 and 𝑆𝑚𝑎𝑥,𝑌 > 𝑆𝑌1 , equation are stiff and time step has to be reduced.

⚫ Cf. stiff thermo-chemical solver is integrated over a fraction of the time step 

∆𝑡 =
𝑆𝑚𝑎𝑥,𝛼1

𝑆𝛼1

∆𝑡

2

Multiphase model study

𝑄 = −
𝐵′

𝐴𝐵′ − 𝐴′𝐵

∆𝑇 𝑛

∆𝑡
−

𝐵

𝐴𝐵′ − 𝐴′𝐵

∆𝑔 𝑛

∆𝑡
, ሶ𝑌 =

𝐴′

𝐴𝐵′ − 𝐴′𝐵

∆𝑇 𝑛

∆𝑡
−

𝐴

𝐴𝐵′ − 𝐴′𝐵

∆𝑔 𝑛

∆𝑡

𝑆𝑚𝑎𝑥,𝛼1 =

1 − 𝛼1
∆𝑡

, if 𝑆𝛼1 > 0

−𝛼1
∆𝑡

, otherwise
𝑆𝑚𝑎𝑥,𝑌 =

1 − 𝑌

∆𝑡
, if 𝑆𝑌 > 0

−𝑌

∆𝑡
, otherwise
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⚫ 5 equation model (pressure-velocity relaxation model)

⚫ Solution procedure

⚫ Location of interfaces

⚫ volume(𝛼) and mass(𝑌) fractions → 1 (1 − 𝜖1, 𝜖1 = 10−8) → pure fluid cells

⚫ 𝜖2 ≤ 𝛼, 𝑦 ≤ 1 − 𝜖2, 𝜖2 = 10−6 → mixture cells; interfaces

• If 𝜖2 is taken too close to 𝜖1, evaporation may occur too early and not only in the interfacial zone (can occur during expansion waves).

⚫ If one of the fluids in the mixture cell is metastable (𝑇𝑘 > 𝑇𝑠𝑎𝑡 𝑝 ), mass transfer( ሶ𝒀) is occured.

Multiphase model study

Saturation line𝑝

𝑇

Meta-stable (𝑇ℓ > 𝑇𝑠𝑎𝑡)
➔ ሶ𝑌 (liq → vap) occur

𝑇𝑠𝑎𝑡 𝑇ℓ

𝝐𝟐𝝐𝟏 𝟏 − 𝝐𝟐 𝟏 − 𝝐𝟏

Mixture cell 𝜶, 𝒚

Pure fluid cells

𝝐𝟐

𝟏 − 𝝐𝟐

𝝐𝟏

𝟏 − 𝝐𝟏
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⚫ 6 equation model (velocity relaxation model, finally 𝒑 − 𝒗 relxation)

⚫ Strength (vs 5 equation model)

⚫ The existence of non-conservative contribution in the volume fraction eq. of 5 equation model

⚫ Because of the variation of the volume fraction across the acoustic wave, the approximate Riemann solvers are not suitable.

⚫ When shocks and strong rarefaction wave are involved, volume fraction may be negative.

⚫ The non-monotonic behavior of 5 equation model

⚫ In the numerical diffusion of an interface, non-monotonic speed of sound can make two sonic points. (even when the flow is 

subsonic in both pure fluids) → affect the propagation of acoustic waves interacting with the interfacial zone.

Multiphase model study

𝜕𝛼1
𝜕𝑡

+ 𝒖 ⋅ ∇𝛼1 =
𝛼1𝛼2 𝜌2𝑐2

2 − 𝜌1𝑐1
2

𝛼2𝜌1𝑐1
2 + 𝛼1𝜌2𝑐2

2 div 𝒖 Non-conservative term

Liquid

Sub-sonic

Gas

Sub-sonic

Mixture

Sonic point

𝑐(∝ 1/𝑀)

x

Non-monotonic monotonic

Liquid Gas

𝑐(∝ 1/𝑀)

x
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⚫ 6 equation model (velocity relaxation model, finally 𝒑 − 𝒗 relxation)

⚫ Volume fraction eq.

⚫ Each phase’s balance eq. (k = 1,2)

⚫ Energy eq. are based on internal energy (𝜌𝑘𝜀𝑘).

→Where interface pressure is determined similar to 7 eq model’s way. 𝑝𝐼 = (𝑍1𝑝1 + 𝑍2𝑝2)/(𝑍1 + 𝑍2)

⚫ Mixture momentum eq.

➔With only pressure relaxation term, not temperature relaxation term.

Multiphase model study

𝜕𝛼1
𝜕𝑡

+ 𝒖 ⋅ ∇𝛼1 = 𝜇 𝑝1 − 𝑝2

𝜕𝛼1𝜌1
𝜕𝑡

+ div 𝛼1𝜌1𝒖 = 0

𝜕𝛼1𝜌1𝜀1
𝜕𝑡

+ div 𝛼1𝜌1𝜀1𝒖 + 𝛼1𝑝1∇ ⋅ 𝒖 = 𝜇𝑝𝐼 𝑝2 − 𝑝1

𝜕𝛼2𝜌2
𝜕𝑡

+ div 𝛼2𝜌2𝒖 = 0

𝜕𝛼2𝜌2𝜀2
𝜕𝑡

+ div 𝛼2𝜌2𝜀2𝒖 + 𝛼2𝑝2∇ ⋅ 𝒖 = 𝜇𝑝𝐼 𝑝1 − 𝑝2

𝜕𝜌𝒖

𝜕𝑡
+ div 𝜌𝒖 × 𝒖 + ∇ 𝛼1𝑝1 + 𝛼2𝑝2 = 0
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⚫ 6 equation model (velocity relaxation model, finally 𝒑 − 𝒗 relxation)

⚫ Energy eq. are based on total energy (𝐸𝑘).

⚫ Non-conservation term

⚫ Although phasic total energy eq. are non-conservative form, mixture total energy is conservative.

➔ Beneficial to satisfy “Mixture energy consistent discretization”

Multiphase model study

𝜕𝛼1𝐸1
𝜕𝑡

+ div 𝛼1𝐸1𝒖+ 𝛼1𝑝1𝒖 + Σ 𝑞, ∇𝑞 = 𝜇𝑝𝐼 𝑝2 − 𝑝1

𝜕𝛼2𝐸2
𝜕𝑡

+ div 𝛼2𝐸2𝒖+ 𝛼2𝑝2𝒖 − Σ 𝑞, ∇𝑞 = 𝜇𝑝𝐼 𝑝1 − 𝑝2

Σ 𝑞, ∇𝑞 = −𝒖 ⋅ 𝑌2∇ 𝛼1𝑝1 − 𝑌1∇ 𝛼2𝑝2 = −𝒖 ⋅ 𝑌2𝑝1 + 𝑌1𝑝2 ∇𝛼1 + 𝛼1𝑌2∇𝑝1 − 𝛼2𝑌1∇𝑝2

𝝏𝑬

𝝏𝒕
+ 𝛁 ⋅ 𝑬𝒖 + 𝜶𝟏𝒑𝟏𝒖+ 𝜶𝟐𝒑𝟐𝒖 = 𝟎
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⚫ 6 equation model (velocity relaxation model, finally 𝒑 − 𝒗 relxation)

⚫ With heat and mass transfer

Where,

Multiphase model study

𝜕𝛼1𝐸1
𝜕𝑡

+ div 𝛼1𝐸1𝒖+ 𝛼1𝑝1𝒖 + Σ 𝑞, ∇𝑞 = 𝜇𝑝𝐼 𝑝2 − 𝑝1 + 𝑸+ 𝒆𝑰 ሶ𝒎

𝜕𝛼2𝐸2
𝜕𝑡

+ div 𝛼2𝐸2𝒖+ 𝛼2𝑝2𝒖 − Σ 𝑞, ∇𝑞 = 𝜇𝑝𝐼 𝑝1 − 𝑝2 − 𝑸− 𝒆𝑰 ሶ𝒎

Σ 𝑞, ∇𝑞 = −𝒖 ⋅ 𝑌2∇ 𝛼1𝑝1 − 𝑌1∇ 𝛼2𝑝2 = −𝒖 ⋅ 𝑌2𝑝1 + 𝑌1𝑝2 ∇𝛼1 + 𝛼1𝑌2∇𝑝1 − 𝛼2𝑌1∇𝑝2

𝜕𝛼1
𝜕𝑡

+ 𝒖 ⋅ ∇𝛼1 = 𝜇 𝑝1 − 𝑝2 +
ሶ𝒎

𝝆𝑰
𝜕𝛼1𝜌1
𝜕𝑡

+ div 𝛼1𝜌1𝒖 = ሶ𝒎

𝜕𝛼2𝜌2
𝜕𝑡

+ div 𝛼2𝜌2𝒖 = − ሶ𝒎

𝜕𝜌𝒖

𝜕𝑡
+ div 𝜌𝒖 × 𝒖 + ∇ 𝛼1𝑝1 + 𝛼2𝑝2 = 0

𝑸 = 𝑯 𝑻𝟐 − 𝑻𝟏 , 𝐻 = ቊ
∞, if 104 ≤ 𝛼1 ≤ 1 − 𝜖1
0, otherwise

ሶ𝒎 = 𝝂 𝒈𝟐 − 𝒈𝟏 , 𝜈 = ቊ
∞, if 𝜖1 ≤ 𝛼1 ≤ 1 − 𝜖1 and 𝑇𝑙𝑖𝑞 > 𝑇𝑠𝑎𝑡
0, otherwise
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⚫ 6 equation model (velocity relaxation model, finally 𝒑 − 𝒗 relxation)

⚫ Compact form

∇ ⋅ 𝑓 𝑞 : conservative term

𝜎 𝑞, ∇𝑞 : non-conservative term

𝜓𝜇: mechanical relaxation term

𝜓𝐻: thermal relaxation term

𝜓𝜈: chemical relaxation term

⚫ Solution with only mechanical relaxation term

⚫ Homogenous hyperbolic solver (step 1) – represented superscript 0

⚫ Stiff mechanical relaxation solver (ODEs) (step 2) – represented superscript *

⚫ the limit 𝜇 → ∞, 𝑝ℓ = 𝑝𝑣 = 𝑝, not only at liquid-vapour interfaces

⚫ The partial densities (𝛼𝑘𝜌𝑘), mixture momentum (𝜌𝒖), mixture total energy (𝐸), mixture internal energy (𝜀) remain constant 

because these aren’t related to mechanical relaxation term (𝜇).

→ 𝛼𝑘𝜌𝑘
0 = 𝛼𝑘𝜌𝑘

∗, 𝜌𝒖 0 = 𝜌𝒖 ∗, 𝐸0 = 𝐸∗, 𝜀0 = 𝜀∗

⚫ The volume fraction (𝛼1), mixture pressure (𝑝), phasic internal energies (𝛼𝑘𝜀𝑘) are updated by “stiff mechanical solver”

→ 𝛼1
0 ≠ 𝛼1

∗, 𝑝0 ≠ 𝑝∗, 𝛼𝑘𝜀𝑘
0 ≠ 𝛼𝑘𝜀𝑘

∗

Multiphase model study

𝝏𝒕𝒒 + 𝛁 ⋅ 𝒇 𝒒 + 𝝈 𝒒,𝛁𝒒 = 𝝍𝝁 𝒒 + 𝝍𝑯 𝒒 + 𝝍𝝂 𝒒

𝜕𝑡𝑞 + ∇ ⋅ 𝑓 𝑞 + 𝜎 𝑞, ∇𝑞 = 0

𝜕𝑡𝑞 = 𝜓𝜇 𝑞
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⚫ 6 equation model (velocity relaxation model, finally 𝒑 − 𝒗 relxation)

⚫ Mixture energy consistent discretization

⚫ For numerical solutions of multiphase, the quantities (partial density 𝛼𝑘𝜌𝑘, mixture density 𝜌, mixture 

momentum 𝜌𝒖, mixture energy 𝐸) have to be conserved.

⚫ numerical approximation of non-conservative term cause the inaccurate solutions in the shock.

➔ Godunov-type schemes can easily preserve conservation at the discrete level of quantities.

⚫ 6 eq model does not contain the total energy conservation eq., but two phasic energy eq.

➔ To be conservation of total energy at the discrete level and be consistent with the correct thermodynamics state, the phasic 

energy eq. have to be discretized. 

⚫ Postulations of Mixture energy consistent

⚫ Mixture total energy conservation consistency

𝐸0,𝐶: discrete values of the mixture total energy by numerical approximation of total energy eq. 

(𝜕𝑡𝐸 + ∇ ⋅ 𝐸𝑢 + 𝛼1𝑝1𝑢 + 𝛼2𝑝2𝑢 = 0)

➔ the sum of the discrete values of the phasic total energies by step 1 must be equal discrete values of the mixture total energy. 

⚫ Relaxed pressure consistency 

➔ 𝑝∗(equilibrium) solved by step 2 must be equal the pressure computed by the mixture equation of state

(∵ To derive mixture equation of state, it assumed that pressure equilibrium is reached.)

Multiphase model study

𝐸0 = Σ 𝛼𝑘𝐸𝑘
0 = 𝐸0,𝐶

𝜀0,𝐶 = 𝐸0,𝐶 −
𝜌𝒖 0 ⋅ 𝜌𝒖 0

2𝜌0
= Σ𝛼𝑘

∗𝜀𝑘 𝑝∗,
𝛼𝑘𝜌𝑘

0

𝛼𝑘
∗

Mixture energy using mixture EOS 

derived under pressure equilibrium

(mixture energy is constant)

Sum of partial energy 

after pressure relaxation

(partial energy vary)
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⚫ 6 equation model (velocity relaxation model, finally 𝒑 − 𝒗 relxation)

⚫ Mixture energy consistent discretization

⚫ Postulations of Mixture energy consistent

⚫ For phasic total energy eq., a standard conservative schemes are used to conservative term

⚫ Symmetrically discretized non-conservative term Σ(𝑞, ∇𝑞) result in conservative discrete form of the mixture energy eq. 

(∵ cancellation of non-conservative discrete contributions)

⚫ Mixture total energy conservation consistency → Relaxed pressure consistency 

➔ This process ensure to satisfy the postulations of mixture energy consistent and guarantee 

thermodynamically correct value of the equilibrium pressure 𝑝∗ (mixture total energy consistent)

⚫ The difficulty with phasic internal energy eq.

⚫ Discretized phasic internal energies eq. ↛ a conservative discrete form of mixture total energy eq.

→ The additional mixture total energy eq. is required to correct the thermodynamic state predicted by the non-conservative 

internal energy eq.

⚫ It is not guarantee the relaxed pressure consistency 

(cf. Suerl 𝒆𝒕 𝒂𝒍., 2009)

Multiphase model study

𝜕𝑡 𝛼𝑘𝐸𝑘 + ∇ ⋅ 𝛼𝑘𝐸𝑘𝒖 + 𝛼𝑘𝑝𝑘𝒖
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⚫ 6 equation model (velocity relaxation model, finally 𝒑 − 𝒗 relxation)

⚫ Mixture energy consistent discretization

⚫ Stiff mechanical relaxation solver (ODEs)

⚫ The partial densities (𝛼𝑘𝜌𝑘), mixture momentum (𝜌𝒖) remain constant because the equations doesn’t contain mechanical 

relaxation term (𝜇).

Combining upper equations

the sum of the phasic equations is zero.

➔Mixture total and internal energy are constant as the phasic pressure (𝑝𝑘) reach equilibrium pressure (𝑝∗) (under step 2)

⚫ Interface pressure (𝑝𝐼) assuming a linear variation with 𝛼1

Multiphase model study

𝜕𝑡𝛼1 = 𝜇 𝑝1 − 𝑝2 , 𝜕𝑡 𝛼1𝐸1 = 𝜇𝑝𝐼 𝑝2 − 𝑝1 , 𝜕𝑡 𝛼2𝐸2 = 𝜇𝑝𝐼 𝑝1 − 𝑝2

𝜕𝑡 𝛼𝑘𝜌𝑘 = 0, 𝜕𝑡 𝜌𝒖 = 0

𝜕𝑡 𝛼1𝐸1 = 𝜕𝑡 𝛼1𝜌1𝜀1 = −𝑝𝐼𝜕𝑡𝛼1, 𝜕𝑡 𝛼2𝐸2 = 𝜕𝑡 𝛼2𝜌2𝜀2 = 𝑝𝐼𝜕𝑡𝛼1

𝛼𝑘𝜌𝑘
0 = 𝛼𝑘𝜌𝑘

∗, 𝜌𝒖 0 = 𝜌𝒖 ∗ → 𝜌0 = 𝜌∗, 𝒖𝟎 = 𝒖∗

𝜕𝑡𝐸 = 𝜕𝑡 𝜌𝜀 = 0 → 𝐸0 = 𝐸∗, 𝜌𝜀 0 = 𝜌𝜀 ∗

𝑝𝐼 = 𝑝𝐼
0
𝑝𝐼
∗ − 𝑝0

∗

𝛼1
∗ − 𝛼1

0 𝛼1 − 𝛼1
0
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⚫ 6 equation model (velocity relaxation model, finally 𝒑 − 𝒗 relxation)

⚫ Mixture energy consistent discretization

⚫ Stiff mechanical relaxation solver (ODEs)

⚫ In the limit 𝜇 → ∞, 𝑝1
∗ = 𝑝2

∗ = 𝑝I
∗ = 𝑝 and internal energy at final time 𝜌𝑘𝜀𝑘

∗ = f 𝑝∗, 𝛼𝑘𝜌𝑘
0/𝛼𝑘

∗ with together 

specific EOS (ex. SGEOS, etc.)  → 𝒑∗, 𝜶𝟏
∗

⚫ Using 𝑝∗, 𝛼1
∗, the relaxed pressure consistency can be verified (through mixture pressure law).

Where 𝜌𝜀 0 = 𝜌𝜀 ∗, 𝛼𝑘𝜌𝑘
0 = 𝛼𝑘𝜌𝑘

∗

: Conservation-consistent discrete values of the mixture total energy, 𝐸0 = Σ 𝛼𝑘𝐸𝑘
0 = 𝐸0,𝐶

➔ Relaxed pressure consistency, 𝜀0 = 𝐸0 −
𝜌𝒖 0⋅ 𝜌𝒖 0

2𝜌0
= 𝛼1

∗ 𝜀1 𝒑∗,
𝛼1𝜌1

0

𝛼1
∗ + 𝛼2

∗𝜀2 𝒑∗,
𝛼2𝜌2

0

𝛼2
∗

Multiphase model study

න
step1(0)

step2(∗)

𝜕𝑡 𝛼1𝐸1 = න
step1(0)

step2(∗)

𝜕𝑡 𝛼1𝜌1𝜀1 = න
step1(0)

step2(∗)

−𝑝𝐼
0
𝑝𝐼
∗ − 𝑝0

∗

𝛼1
∗ − 𝛼1

0 𝛼1 − 𝛼1
0 𝜕𝑡𝛼1

න
step1(0)

step2(∗)

𝜕𝑡 𝛼2𝐸2 = න
step1(0)

step2(∗)

𝜕𝑡 𝛼2𝜌2𝜀2 = න
step1(0)

step2(∗)

𝑝𝐼
0
𝑝𝐼
∗ − 𝑝0

∗

𝛼1
∗ − 𝛼1

0 𝛼1 − 𝛼1
0 𝜕𝑡𝛼1

𝛼1𝐸1
∗ − 𝛼1𝐸1

0 = 𝛼1𝜀1
∗ − 𝛼1𝜀1

0 = −
𝑝𝐼
0 + 𝑝𝐼

∗

2
𝛼1
∗ − 𝛼1

0

𝛼2𝐸2
∗ − 𝛼2𝐸2

0 = 𝛼2𝜀2
∗ − 𝛼2𝜀2

0 =
𝑝𝐼
0 + 𝑝𝐼

∗

2
𝛼1
∗ − 𝛼1

0

𝑝∗ = 𝑝 𝜀0, 𝛼1
∗,

𝛼𝑘𝜌𝑘
0

𝛼𝑘
∗
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⚫ 6 equation model (velocity relaxation model, finally 𝒑 − 𝒗 relxation)

⚫ Solution with thermal and chemical relaxation terms

⚫ Mechanical relaxation time ≪ thermal-chemical relaxation time

⚫ Thermal and chemical relaxation occur under mechanical relaxation (pressure equilibrium).

⚫ Stiff thermal relaxation solver (ODEs) (step 3) – represented superscript **

⚫ the limit 𝐻 → ∞, 𝑇ℓ = 𝑇𝑣 = 𝑇, at only liquid – vapour interfaces

⚫ The initial values are coming from pressure relaxation solver.

⚫ Metastable condition, 𝑇ℓ
∗∗ > 𝑇𝑠𝑎𝑡(𝑝

∗∗), is verified through the updated values (with superscript **).

⚫ The partial densities (𝛼𝑘𝜌𝑘) (of course, mixture density 𝜌), mixture momentum (𝜌𝒖), total energy (𝐸),internal energy (𝜌𝜀) 

remain constant because these aren’t related to thermal relaxation term (𝑯) as well as mechanical relaxation term (𝜇).

→ 𝛼𝑘𝜌𝑘
0 = 𝛼𝑘𝜌𝑘

∗ = 𝛼𝑘𝜌𝑘
∗∗, 𝜌𝒖 0 = 𝜌𝒖 ∗ = 𝜌𝒖 ∗∗, 𝐸0 = 𝐸∗ = 𝐸∗∗, 𝜀0 = 𝜀∗ = 𝜀∗∗

➔ Using algebraic system (in case of SGEOS, quadratic eq.), equilibrium pressure (𝑝∗∗) can be obtained. 

Then, also equilibrium values 𝛼1
∗∗ 𝑝∗∗ , 𝑇∗∗ 𝛼1

∗∗ are obtained.

Multiphase model study

𝜕𝑡𝑞 = 𝜓𝜇 𝑞 + 𝝍𝑯 𝒒

𝜕𝑡𝛼1 = 𝜇 𝑝1 − 𝑝2

𝜕𝑡 𝛼𝑘𝜌𝑘 = 0, 𝜕𝑡 𝜌𝒖 = 0

𝜕𝑡 𝛼1𝐸1 = 𝜇𝑝𝐼 𝑝2 − 𝑝1 + 𝐻 𝑇2 − 𝑇1 , 𝜕𝑡 𝛼2𝐸2 = 𝜇𝑝𝐼 𝑝1 − 𝑝2 + 𝐻 𝑇1 − 𝑇2
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⚫ 6 equation model (velocity relaxation model, finally 𝒑 − 𝒗 relxation)

⚫ Solution with thermal and chemical relaxation terms

⚫ Stiff thermal-chemical relaxation solver (ODEs) (step 4) – represented superscript ***

⚫ Under metastable region which is checked from the step 3, the limit 𝜈 → ∞, 𝑔ℓ = 𝑔𝑣, at only liquid vapour interfaces

⚫ The initial values are coming from pressure-temperature relaxation solver.

⚫ The mixture density (𝜌) (not partial densities, 𝛼𝑘𝜌𝑘, due to ሶ𝑚 = 𝜈 𝑔2 − 𝑔1 ), momentum (𝜌𝒖), total energy 

(𝐸),internal energy (𝜀) remain constant because these aren’t related to thermal (𝐻) and chemical relaxation (𝝂) terms 

as well as mechanical relaxation term (𝜇).

→ 𝜌0 = 𝜌∗ = 𝜌∗∗ = 𝜌∗∗∗, 𝜌𝒖 0 = 𝜌𝒖 ∗ = 𝜌𝒖 ∗∗ = 𝜌𝒖 ∗∗∗, 𝐸0 = 𝐸∗ = 𝐸∗∗ = 𝐸∗∗∗, 𝜀0 = 𝜀∗ = 𝜀∗∗ = 𝜀∗∗∗

→ 𝜌0 = Σ𝛼𝑘
∗∗∗𝜌𝑘

∗∗∗, 𝜀0 = Σ𝛼𝑘
∗∗∗𝜀𝑘

∗∗∗

⚫ In these equations, interface variables (𝜌𝐼 , 𝒆𝑰) doesn’t need to be specified.

➔ Using algebraic system (in case of SGEOS, quadratic eq.), equilibrium pressure (𝑝∗∗∗) can be obtained. 

Then, also equilibrium values 𝑇∗∗∗ 𝑝∗∗∗ , 𝜌∗∗∗ 𝑝∗∗∗, 𝑇∗∗∗ , 𝛼1
∗∗∗ 𝜌∗∗∗ are obtained.

Multiphase model study

𝜕𝑡𝑞 = 𝜓𝜇 𝑞 + 𝝍𝑯 𝒒 + 𝝍𝝂 𝒒

𝜕𝑡𝛼1 = 𝜇 𝑝1 − 𝑝2 + 𝜈
𝑔2 − 𝑔1

𝜌𝐼
, 𝜕𝑡 𝜌𝒖 = 0

𝜕𝑡 𝛼1𝜌1 = 𝜈 𝑔2 − 𝑔1 ,
𝜕𝑡 𝛼2𝜌2 = 𝜈 𝑔1 − 𝑔2

𝜕𝑡 𝛼1𝐸1 = 𝜇𝑝𝐼 𝑝2 − 𝑝1 + 𝐻 𝑇2 − 𝑇1 + 𝜈𝒆𝑰 𝑔2 − 𝑔1 ,
𝜕𝑡 𝛼2𝐸2 = 𝜇𝑝𝐼 𝑝1 − 𝑝2 +𝐻 𝑇1 − 𝑇2 ++𝜈𝒆𝑰 𝑔1 − 𝑔2

Saturation line𝑝

𝑇

Meta-stable (𝑇ℓ > 𝑇𝑠𝑎𝑡)

𝑇𝑠𝑎𝑡 𝑇ℓ
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⚫ 5 equation model (pressure-velocity relaxation model)

⚫ Asymptotic limit with stiff pressure relaxation (𝝁 → ∞)

⚫ The equation that contain relaxation parameter (𝜇) are changed only.

⚫ Volume fraction equation

⚫ Each phasic internal energy equations (with mass balance equation)

⚫ Internal energy equations can be expressed as pressure evolution equations using 𝑒1 = 𝑒1 𝜌1, 𝑝1 .

Appendix A

𝜕𝛼1
𝜕𝑡

+ 𝑢 ⋅ ∇𝛼1 = 𝜇 𝑝1 − 𝑝2 ⇒
𝒅𝜶𝟏
𝒅𝒕

= 𝝁(𝒑𝟏 − 𝒑𝟐)

𝜕𝛼1𝜌1𝑒1
𝜕𝑡

+
𝜕

𝜕𝑥
𝛼1𝜌1𝑒1𝑢 + 𝛼1𝑝1

𝜕𝑢

𝜕𝑥
= 𝜇𝑝𝐼 𝑝2 − 𝑝1 ,

𝑑

𝑑𝑡
𝛼1𝜌1 + 𝛼1𝜌1

𝜕𝑢

𝜕𝑥
= 0

⇒ 𝜶𝟏𝝆𝟏
𝒅𝒆𝟏
𝒅𝒕

+ 𝜶𝟏𝒑𝟏
𝒅𝒖

𝒅𝒙
= −𝒑𝑰𝝁(𝒑𝟏 − 𝒑𝟐)

𝜕𝛼2𝜌2𝑒2
𝜕𝑡

+
𝜕

𝜕𝑥
𝛼2𝜌2𝑒2𝑢 + 𝛼2𝑝2

𝜕𝑢

𝜕𝑥
= 𝜇𝑝𝐼 𝑝1 − 𝑝2 ,

𝑑

𝑑𝑡
𝛼2𝜌2 + 𝛼2𝜌2

𝜕𝑢

𝜕𝑥
= 0

⇒ 𝜶𝟐𝝆𝟐
𝒅𝒆𝟐
𝒅𝒕

+ 𝜶𝟐𝒑𝟐
𝒅𝒖

𝒅𝒙
= 𝒑𝑰𝝁(𝒑𝟏 − 𝒑𝟐)

𝛼1𝜌1 ቤ
𝜕𝑒1
𝜕𝜌1 𝑝1

𝑑𝜌1
𝑑𝑡

+ ቤ
𝜕𝑒1
𝜕𝑝1 𝜌1

𝑑𝑝1
𝑑𝑡

+
𝑝1
𝜌1

𝜕𝑢

𝜕𝑥
= −𝑝𝐼𝜇 𝑝1 − 𝑝2
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⚫ 5 equation model (pressure-velocity relaxation model)

⚫ Asymptotic limit with stiff pressure relaxation (𝝁 → ∞)
⚫ Mass balance equation for phase 1 with volume fraction equation.

⚫ Sound speed definitions

⚫ Final form

𝑑

𝑑𝑡
𝛼1𝜌1 + 𝛼1𝜌1

𝜕𝑢

𝜕𝑥
= 0,

𝑑𝛼1
𝑑𝑡

= 𝜇 𝑝1 − 𝑝2 ⇒
𝑑𝜌1
𝑑𝑡

= −
𝜌1
𝛼1

𝜇 𝑝1 − 𝑝2 − 𝜌1
𝜕𝑢

𝜕𝑥

𝑐1
2 =

𝑝1
𝜌1
2 − ฬ

𝜕𝑒1
𝜕𝜌1 𝑝1

ฬ
𝜕𝑒1
𝜕𝑝1 𝜌1

, 𝑐1,𝐼
2 =

𝑝𝐼
𝜌1
2 − ฬ

𝜕𝑒1
𝜕𝜌1 𝑝1

ฬ
𝜕𝑒1
𝜕𝑝1 𝜌1

𝑑𝑝1
𝑑𝑡

+ 𝜌1

𝑝1
𝜌1
2 − ฬ

𝜕𝑒1
𝜕𝜌1 𝑝1

ฬ
𝜕𝑒1
𝜕𝑝1 𝜌1

𝜕𝑢

𝜕𝑥
= −

𝜌1
𝛼1

𝑝𝐼
𝜌1
2 − ฬ

𝜕𝑒1
𝜕𝜌1 𝑝1

ฬ
𝜕𝑒1
𝜕𝑝1 𝜌1

𝜇 𝑝1 − 𝑝2

∵
𝒅𝒑𝟏
𝒅𝒕

+ 𝝆𝟏𝒄𝟏
𝟐 𝝏𝒖

𝝏𝒙
= −

𝝆𝟏
𝜶𝟏

𝒄𝟏,𝑰
𝟐 𝝁 𝒑𝟏 − 𝒑𝟐

𝒅𝒑𝟐
𝒅𝒕

+ 𝝆𝟐𝒄𝟐
𝟐 𝝏𝒖

𝝏𝒙
=
𝝆𝟐
𝜶𝟐

𝒄𝟐,𝑰
𝟐 𝝁 𝒑𝟏 − 𝒑𝟐

Appendix A
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⚫ 5 equation model (pressure-velocity relaxation model)

⚫ Asymptotic limit with stiff pressure relaxation (𝝁 → ∞)

⚫ Asymptotic expansion, 𝑓 = 𝑓0 + 𝜖𝑓1

⚫ 𝑓0 : equilibrium state

⚫ 𝑓1 : small perturbation around this state

⚫ 𝜖 → 0+ : Stiff pressure relaxation

⚫ Order 1/𝜖

→ 𝑝1
0 = 𝑝2

0 = 𝑝0 = 𝑝𝐼
0

→ 𝑐1
02 = 𝑐1,𝐼

0 2
, 𝑐2

02 = 𝑐2,𝐼
0 2

Appendix A

𝑑𝑝1
𝑑𝑡

+ 𝜌1𝑐1
2
𝜕𝑢

𝜕𝑥
= −

𝜌1
𝛼1

𝑐1,𝐼
2 𝜇 𝑝1 − 𝑝2

⇒
𝑑𝑝1

0

𝑑𝑡
+ 𝜖

𝑑𝑝1
1

𝑑𝑡
+ 𝜌1

0 + 𝜖𝜌1
1 𝑐1

0 + 𝜖𝑐1
1 2

𝜕𝑢0

𝜕𝑥
+ 𝜖

𝜕𝑢1

𝜕𝑥
= −

𝜌1
0 + 𝜖𝜌1

1

𝛼1
0 + 𝜖𝛼1

1 𝑐1,𝐼
0 + 𝜖𝑐1,𝐼

1 2 1

𝜖
𝑝1
0 + 𝜖𝑝1

1 − 𝑝2
0 − 𝜖𝑝2

1

𝒅𝒑𝟏
𝟎

𝒅𝒕
+ 𝝆𝟏

𝟎𝒄𝟏
𝟎𝟐 𝝏𝒖

𝟎

𝝏𝒙
= −

𝝆𝟏
𝟎

𝜶𝟏
𝟎
𝒄𝟏,𝑰
𝟎 𝟐 𝟏

𝝐
𝒑𝟏
𝟎 + 𝝐𝒑𝟏

𝟏 − 𝒑𝟐
𝟎 − 𝝐𝒑𝟐

𝟏

1

𝜖
𝑝1
0 − 𝑝2

0 = 0
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⚫ 5 equation model (pressure-velocity relaxation model)

⚫ Asymptotic limit with stiff pressure relaxation (𝝁 → ∞)

⚫ Asymptotic expansion, 𝑓 = 𝑓0 + 𝜖𝑓1

⚫ Zero – order 

⚫ In the limit 𝜇 → ∞, volume fraction equation

Appendix A

𝑑𝑝0

𝑑𝑡
+ 𝜌1

0𝑐1
02
𝜕𝑢0

𝜕𝑥
= −

𝜌1
0

𝛼1
0 𝑐1

02 𝑝1
1 − 𝑝2

1

𝑑𝑝0

𝑑𝑡
+ 𝜌2

0𝑐2
02
𝜕𝑢0

𝜕𝑥
=
𝜌2
0

𝛼2
0 𝑐2

02 𝑝1
1 − 𝑝2

1

⇒ 𝑝1
1 − 𝑝2

1 =
𝜌2
0𝑐2

02 − 𝜌1
0𝑐1

02

𝜌2
0

𝛼2
0 𝑐2

02 +
𝜌1
0

𝛼1
0 𝑐1

02

𝜕𝑢0

𝜕𝑥

∵
𝒅𝜶𝟏
𝒅𝒕

=
𝝆𝟐𝒄𝟐

𝟐 − 𝝆𝟏𝒄𝟏
𝟐

𝝆𝟐
𝜶𝟐

𝒄𝟐
𝟐 +

𝝆𝟏
𝜶𝟏

𝒄𝟏
𝟐

𝝏𝒖

𝝏𝒙
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⚫ Method of Characteristics

⚫ 1D, unsteady isentropic flow

⚫ Differential equation

⚫ Mass equation

⚫ Momentum equation

⚫ Energy equation (isentropic equation)

⚫ Using these equations, it can be expressed by characteristics line form.

⚫ Non-linear differential equations.

• Because a propagation velocity is different at each point on the wave, wave form are changed. → shock formation in finite compression region.

Appendix B

𝑑𝜌

𝑑𝑡
+ 𝜌

𝜕𝑢

𝜕𝑥
= 0

𝑑𝑠

𝑑𝑡
= 0

𝜌
𝑑𝑢

𝑑𝑡
= −𝑝

𝜕𝑝

𝜕𝑥

𝜕

𝜕𝑡
𝑢 +

2

𝛾 − 1
𝑎 + 𝑢 + 𝑎

𝜕

𝜕𝑥
𝑢 +

2

𝛾 − 1
𝑎 = 0

𝜕

𝜕𝑡
𝑢 −

2

𝛾 − 1
𝑎 + 𝑢 − 𝑎

𝜕

𝜕𝑥
𝑢 −

2

𝛾 − 1
𝑎 = 0
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⚫ Method of Characteristics

⚫ 1D, unsteady isentropic flow

⚫ If assuming small perturbance (weak wave), it has linearity. → acoustic equations

⚫ Wave equations

⚫ Equations can be expressed by other variables (𝜂 = 𝑥 + 𝑎𝑡, 𝜁 = 𝑥 − 𝑎𝑡)

⚫ Chain rule

Appendix B

𝜕

𝜕𝑡

𝑢

𝑎
+ 𝑎

𝜕

𝜕𝑥

𝜌′

𝜌
= 0

𝜕

𝜕𝑡

𝜌′

𝜌
+ 𝑎

𝜕

𝜕𝑥

𝑢

𝑎
= 0

𝜕2

𝜕𝑡2
𝑢

𝑎
− 𝑎2

𝜕2

𝜕𝑥2
𝑢

𝑎
= 0

𝜕2

𝜕𝑡2
𝜌′

𝜌
− 𝑎2

𝜕2

𝜕𝑥2
𝜌′

𝜌
= 0

𝜕

𝜕𝑡
=

𝜕

𝜕𝜁

𝜕𝜁

𝜕𝑡
+

𝜕

𝜕𝜂

𝜕𝜂

𝜕𝑡
= −𝑎

𝜕

𝜕𝜁
+ 𝑎

𝜕

𝜕𝜂

𝜕

𝜕𝑥
=

𝜕

𝜕𝜁

𝜕𝜁

𝜕𝑥
+

𝜕

𝜕𝜂

𝜕𝜂

𝜕𝑥
=

𝜕

𝜕𝜁
+

𝜕

𝜕𝜂

𝜕2

𝜕𝑡2
=

𝜕

𝜕𝑡

𝜕

𝜕𝑡
=

𝜕

𝜕𝜁

𝜕

𝜕𝑡

𝜕𝜁

𝜕𝑡
+

𝜕

𝜕𝜂

𝜕

𝜕𝑡

𝜕𝜂

𝜕𝑡
= −𝑎 −𝑎

𝜕

𝜕𝜁
+ 𝑎

𝜕

𝜕𝜂

𝜕

𝜕𝜁
+ 𝑎 𝑎

𝜕

𝜕𝜁
+ 𝑎

𝜕

𝜕𝜂

𝜕

𝜕𝜂
= 𝑎2

𝜕2

𝜕𝜁2
− 2

𝜕2

𝜕𝜁𝜕𝜂
+

𝜕2

𝜕𝜂2

𝜕2

𝜕𝑥2
=

𝜕

𝜕𝑥

𝜕

𝜕𝑥
=

𝜕

𝜕𝜁

𝜕

𝜕𝑥

𝜕𝜁

𝜕𝑥
+

𝜕

𝜕𝜂

𝜕

𝜕𝑥

𝜕𝜂

𝜕𝑥
=

𝜕

𝜕𝜁
+

𝜕

𝜕𝜂

𝜕

𝜕𝜁
+

𝜕

𝜕𝜁
+

𝜕

𝜕𝜂

𝜕

𝜕𝜂
=

𝜕2

𝜕𝜁2
+ 2

𝜕2

𝜕𝜁𝜕𝜂
+

𝜕2

𝜕𝜂2
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⚫ Method of Characteristics

⚫ 1D, unsteady isentropic flow

⚫ Equations can be expressed by other variables (𝜂 = 𝑥 + 𝑎𝑡, 𝜁 = 𝑥 − 𝑎𝑡)

⚫ Solution

⚫ Substitute to acoustic equations

⚫ Final form

• 𝑢/𝑎, 𝜌′/𝜌 are right or left facing waves propagated at constant velocity (𝑑𝑥/𝑑𝑡 = 𝑎).

• Because this equations have linearity, wave form does not changed.

Appendix B

𝜕2

𝜕𝜁𝜕𝜂

𝑢

𝑎
= 0

𝜕2

𝜕𝜁𝜕𝜂

𝜌′

𝜌
= 0

𝑢

𝑎
= න

𝑑𝐹 𝜁

𝑑𝜁
𝑑𝜁 + 𝐺 𝜂 = 𝐹 𝜁 + 𝐺 𝜂 = 𝐹 𝑥 − 𝑎𝑡 + 𝐺 𝑥 + 𝑎𝑡

𝜌′

𝜌
= න

𝑑𝑓 𝜁

𝑑𝜁
𝑑𝜁 + 𝑔 𝜂 = 𝑓 𝜁 + 𝑔 𝜂 = 𝑓 𝑥 − 𝑎𝑡 + 𝑔 𝑥 + 𝑎𝑡

−𝑎𝑓′ + 𝑎𝑔′ + 𝑎 𝐹′ + 𝐺′ = 0 −𝑎𝐹′ + 𝑎𝐺′ + 𝑎 𝑓 + 𝑔′ = 0

⇒ 𝐺 𝜂 = 𝑔 𝜂 , 𝐹 𝜁 = 𝑓 𝜁

𝑢

𝑎
= 𝑓 𝑥 − 𝑎𝑡 − 𝑔 𝑥 + 𝑎𝑡

𝜌′

𝜌
= 𝑓 𝑥 − 𝑎𝑡 + 𝑔 𝑥 + 𝑎𝑡
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⚫ Method of Characteristics

⚫ 1D, unsteady isentropic flow

⚫ Finite wave (non-linear differential equations).

⚫ Where P, Q are Riemann invariants which mean constant value along the characteristics line.

Appendix B

𝜕𝑃

𝜕𝑡
+ 𝑢 + 𝑎

𝜕𝑃

𝜕𝑥
= 0

𝜕𝑄

𝜕𝑡
+ 𝑢 − 𝑎

𝜕𝑄

𝜕𝑥
= 0

𝑃 = 𝑢 +
2

𝛾 − 1
𝑎, 𝑄 = 𝑢 −

2

𝛾 − 1
𝑎

𝒅𝒙

𝒅𝒕
= 𝒖 − 𝒂

𝑸 = 𝒄𝒐𝒏𝒔𝒕

𝒅𝒙

𝒅𝒕
= 𝒖 + 𝒂

𝑷 = 𝒄𝒐𝒏𝒔𝒕

Flow path

𝒅𝒙

𝒅𝒕
= 𝒖
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⚫ Shock tube problem (Riemann problem)

⚫ Across the contact wave, there are different fluids.

⚫ After diaphragm raptured, fluids does not penetrated each other (not mixed)

⚫ In other to contact wave is maintained, pressure and normal velocity have to same across the contact wave.

Appendix C

𝑢 = 0, 𝑎 = 𝑎4, 𝜌 = 𝜌4, 𝑝 = 𝑝4, 𝑇 = 𝑇4𝑢 = 0, 𝑎 = 𝑎1, 𝜌 = 𝜌1, 𝑝 = 𝑝1, 𝑇 = 𝑇1𝒕 = 𝟎

𝒑𝟏 < 𝒑𝟒

𝑢 = 0,
𝑎4, 𝜌4, 𝑝4, 𝑇4

𝑢 = 0,
𝑎1, 𝜌1, 𝑝1, 𝑇1

𝒕 > 𝟎

𝑎2, 𝜌2, 𝑝2, 𝑇2 𝑎3, 𝜌3, 𝑝3, 𝑇3

𝒖𝒔 𝒖𝟐 𝒖𝟑

𝒑𝟐 = 𝒑𝟑, 𝒖𝟐 = 𝒖𝟑



Seoul National UniversitySeonghak KIM, hakk35@snu.ac.kr 44

⚫ HLL approximate Riemann solvers

⚫ Across the contact wave, there are different fluids.
⚫ After diaphragm raptured, fluids does not penetrated each other (not mixed)

⚫ In other to contact wave is maintained, pressure and normal velocity have to same across the contact wave.

Appendix C


