



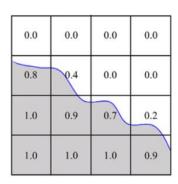
Seonghak KIM Aerospace Engineering, AE

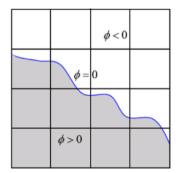
Contents

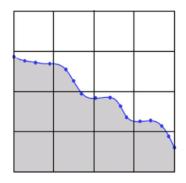
- Interface methods
 - SIM (Sharp Interface Method)
 - DIM (Diffuse Interface Method)
- Phase change phenomenon
- 7 equation model (non-relaxation model)
- 6 equation model (μ relaxation model)
- 5 equation model (μ , p relaxation model)

Interface method

- Sharp interface method (SIM)
 - Interface is considered as a sharp discontinuity.
 - Lagrangian type
 - When fluid flows, Unbounded deformation and mesh distortions → Unpractical
 - Eulerian type
 - A fixed mesh with an additional equation for tracking and reconstructing the interface
 - Volume of fluid (VOF) it is different from homogenous mixture model.
 - the cells are occupied by each volume fraction (α) , transport with the flow.
 - Level-set equation
 - At the interface the number is set as zero, and far from the interface the numbers are positive or negative.
 - With large pressure and density ratios, the interface can be not obvious.
 - Mixture momentum and energy are not conserved.
 - Front tracking method
 - Interfaces is explicitly tracked.
 - Limitations
 - It can't create interface that are not present initially as gas pockets in cavitating flows.
 - It can't solve interfaces separating pure fluids and mixture.

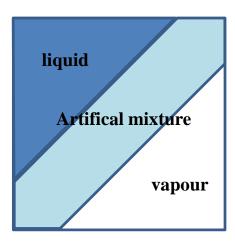






Interface method

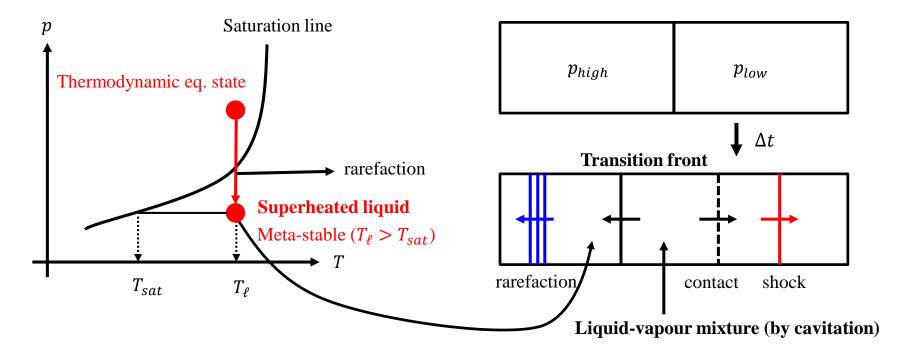
- Diffuse interface method (DIM) Our Framework
 - Interfaces is considered as artificial mixture s created by numerical diffusion.
 - Challenge
 - Physically, mathematically and numerically consistent thermodynamic laws for the artificial mixture
 - Advantages
 - The same algorithm in both pure fluids and mixture
 - it can create interfaces that are not present initially in contrast to SIM.
 - It can deal with interfaces separating pure fluids and mixtures as condensed explosive.
 - Hyperbolic multiphase flow models such as total non-eq. model or mechanical eq. model.



Phase change phenomenon

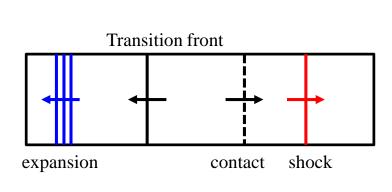
Cavitation

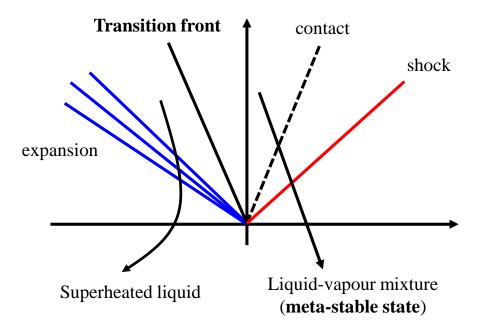
- Superheated liquid in metastable releases internal energy (metastable energy)
 - Producing pure vapour or vapour-liquid mixture (if retrograde); cavitation → Strong disturbance
- Associated experiment (Simoes-Moreira & Shepherd, 1999)
 - It have to be considered that liquid and vapour are compressible. (: wave propagation rarefaction, shock, etc.)
 - In real situation, rarefaction can be occur due to geometrical effect (ex. Nozzle, etc.)



Multiphase model

- Have to ability to deal with
 - Interfaces of simple contact (non-condensable gas water interface, no mass transfer)
 - Evaporating interfaces (vapour water interface, mass transfer that occur under $T_{\ell} > T_{sat}$)





Multiphase model

Relaxation time scales

- Dependent on many parameter of the fluids
- Pressure relaxation time ($\propto 1/\mu$)
 - Compressibility of the fluids
 - Two phase mixture topology
- Velocity relaxation time ($\propto 1/\lambda$)
 - Fluid viscosity
 - Pressure relaxation process
- Temperature relaxation time ($\propto 1/H$)
 - Thermal conductivity of the fluids (arise from the collisions of the molecules of the fluids)
 - → For temperature equilibrium, a large number of collisions is required.
- Gibbs free energy relaxation time ($\propto 1/\nu$)
 - Local chemical relaxation

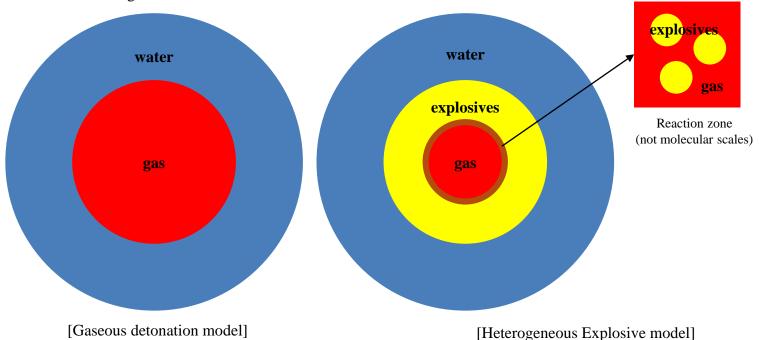
Order of relaxation time

- Pressure $(1/\mu) \le \text{velocity } (1/\lambda) \ll \text{temperature } (1/H) \ll \text{Gibbs free energy } (1/\nu)$
- \rightarrow In many physical situations, pressure and velocity relax instantaneously. (p, v equilibrium)

Multiphase model

- Order of relaxation time
 - Validity of temperature equilibrium
 - In gaseous detonation model, molecular collisions are so intense. → temperature equilibrium.
 - For detonations in heterogeneous explosives, molecular collisions aren't sufficient (mixing is at not molecular scale)
 → temperature non-equilibrium.

→ "Spark generated UNDEX" that is our goal can be considered as "gaseous detonation model" because mixture zone with cavitation occurring at interfaces is at molecular scale.



Multiphase model

• P-T equilibrium model

- Mixture Euler eq. with a cubic EOS (ex. Vdw EOS, etc.)
 - A cubic EOS cause a loss of hyperbolicity in the spinodal region.
 - → The squared sound speed may become negative and wave propagation has no physical meaning.
- Mixture Euler eq. with a tabular EOS or a combination of pure phase EOSs $(p T \mu \text{ relaxation}) 3 \text{ eq.}$
 - No loss of hyperbolicity (: not use cubic EOS)
 - No metastable states
 - Unable to deal with interfaces between a liquid and non-condensable gas
- Mixture Euler eq. + mass fraction eq. with a relaxation term (\dot{m}) 4 eq.
 - Unable to deal with interfaces between a liquid and non-condensable gas (: not isothermal state at interface between a liquid and ncgas $(T_a \neq T_\ell)$)

• T non-equilibrium model

- Five equation model (p v) relaxation
 - Unconditionally hyperbolic
 - Two mass eq. + one mixture momentum eq. + one mixture energy eq. + advection eq. for volume fraction
- Six equation models (*p* relaxation)
 - Advection eq. for volume fraction + two mass eq. + two energy eq. + one mixture momentum eq.
- Seven equation models (non-equilibrium)
 - Unconditionally hyperbolic
 - Balance eq. of mass, momentum and energy of each fluid + advection eq. for volume fraction

- 7 equation model (non-equilibrium model) of Baer-Nunziato
 - Volume fraction eq.

$$\frac{\partial \alpha_1}{\partial t} + \boldsymbol{u}_I \cdot \nabla \alpha_1 = \mu(p_1 - p_2)$$

• Each phase's balance eq. (k = 1,2)

$$\frac{\partial \alpha_1 \rho_1}{\partial t} + \operatorname{div}(\alpha_1 \rho_1 \boldsymbol{u_1}) = 0$$

$$\frac{\partial \alpha_1 \rho_1 \boldsymbol{u_1}}{\partial t} + \operatorname{div}(\alpha_1 \rho_k \boldsymbol{u_k} \times \boldsymbol{u_k}) + \nabla(\alpha_1 p_1) = p_I \nabla \alpha_1 + \lambda(\boldsymbol{u_2} - \boldsymbol{u_1}) = 0$$

$$\frac{\partial \alpha_1 \rho_1 E_1}{\partial t} + \operatorname{div}(\alpha_1(\rho_1 E_1 + p_1) \boldsymbol{u_1}) = p_I \boldsymbol{u_I} \cdot \nabla \alpha_1 + \lambda \boldsymbol{u_I} \cdot (\boldsymbol{u_2} - \boldsymbol{u_1}) + p_I \mu(p_2 - p_1) + H(T_2 - T_1)$$

$$\frac{\partial \alpha_2 \rho_2}{\partial t} + \operatorname{div}(\alpha_2 \rho_2 \boldsymbol{u_2}) = 0$$

$$\frac{\partial \alpha_2 \rho_2 \boldsymbol{u_2}}{\partial t} + \operatorname{div}(\alpha_2 \rho_k \boldsymbol{u_k} \times \boldsymbol{u_k}) + \nabla(\alpha_2 p_2) = p_I \nabla \alpha_2 + \lambda(\boldsymbol{u_1} - \boldsymbol{u_2}) = 0$$

$$\frac{\partial \alpha_2 \rho_2 E_2}{\partial t} + \operatorname{div}(\alpha_2(\rho_2 E_2 + p_2) \boldsymbol{u_2}) = p_I \boldsymbol{u_I} \cdot \nabla \alpha_2 + \lambda \boldsymbol{u_I} \cdot (\boldsymbol{u_1} - \boldsymbol{u_2}) + p_I \mu(p_1 - p_2) + H(T_1 - T_2)$$

• 7 equation model (non-equilibrium model)

- Unconditionally hyperbolic
 - Characteristic wave speeds; u_k , $u_k + c_k$, $u_k c_k$, u_I
- Symmetric closure relations (Saurel et al. 2003)
 - Relaxation coefficients(μ , λ) can be determined.
 - Under the continuous limit of the discrete two-phase flow

$$\mu = \frac{S_I}{Z_1 + Z_2}, \qquad \lambda = Z_1 Z_2 \mu$$

• Z: acoustic impedance $(Z = \rho c)$

Interface variables

• Saurel *et al.* (2003)

$$p_{I} = \frac{Z_{1}p_{2} + Z_{2}p_{1}}{Z_{1} + Z_{2}} + \operatorname{sign}\left(\frac{\partial\alpha_{1}}{\partial x}\right) \frac{(u_{2} - u_{1})Z_{1}Z_{2}}{Z_{1} + Z_{2}}, \qquad u_{I} = \frac{Z_{1}u_{1} + Z_{2}u_{2}}{Z_{1} + Z_{2}} + \operatorname{sign}\left(\frac{\partial\alpha_{1}}{\partial x}\right) \frac{p_{2} - p_{1}}{Z_{1} + Z_{2}}$$

Baer & Nunziato (1986)

$$p_I = p_1, \qquad u_I = u_2$$

• Under stiff mechanical relaxation $(\mu, \lambda \to \infty)$, both interface variables can be inter-changeable.

• 7 equation model (non-equilibrium model)

- Primitive variables
 - Volume fraction eq.

$$\frac{\partial \alpha_1}{\partial t} = -\boldsymbol{u_I} \cdot \nabla \alpha_1 + \mu(p_1 - p_2)$$

• Each phase's balance eq.

$$\frac{\partial \alpha_1 \rho_1}{\partial t} = -\operatorname{div}(\alpha_1 \rho_1 \boldsymbol{u_1})$$

$$\frac{\partial \boldsymbol{u_1}}{\partial t} = -\boldsymbol{u_1} \cdot \boldsymbol{\nabla} \boldsymbol{u_1} - \frac{1}{\rho_1} \boldsymbol{\nabla} p_1 + \frac{p_I - p_1}{\alpha_1 \rho_1} \boldsymbol{\nabla} \alpha_1 + \frac{\lambda}{\alpha_1 \rho_1} (\boldsymbol{u_2} - \boldsymbol{u_1})$$

$$\frac{\partial p_1}{\partial t} = -\rho_1 c_1^2 \operatorname{div}(\boldsymbol{u_1}) + \frac{\Gamma_1}{\alpha_1} \left[p_I - \rho_1^2 \left(\frac{\partial e_1}{\partial \rho_1} \right)_{p_1} \right] (\boldsymbol{u_I} - \boldsymbol{u_1}) \cdot \boldsymbol{\nabla} \alpha_1 + \mu \frac{\Gamma_1}{\alpha_1} \left[p_I - \rho_1^2 \left(\frac{\partial e_1}{\partial \rho_1} \right)_{p_1} \right] (p_2 - p_1) + \lambda \frac{\Gamma_1}{\alpha_1} (\boldsymbol{u_I} - \boldsymbol{u_I}) (\boldsymbol{u_2} - \boldsymbol{u_I}) + \frac{\Gamma_1}{\alpha_1} H(T_2 - T_1)$$

$$\begin{split} \frac{\partial \alpha_2 \rho_2}{\partial t} &= -\text{div}(\alpha_2 \rho_2 \mathbf{u_2}) \\ \frac{\partial \mathbf{u_2}}{\partial t} &= -\mathbf{u_2} \cdot \nabla \mathbf{u_2} - \frac{1}{\rho_2} \nabla p_2 + \frac{p_I - p_2}{\alpha_2 \rho_2} \nabla \alpha_2 + \frac{\lambda}{\alpha_1 \rho_1} (\mathbf{u_1} - \mathbf{u_2}) \\ \frac{\partial p_2}{\partial t} &= -\rho_2 c_2^2 \text{div}(\mathbf{u_2}) + \frac{\Gamma_2}{\alpha_2} \left[p_I - \rho_2^2 \left(\frac{\partial e_2}{\partial \rho_2} \right)_{p_2} \right] (\mathbf{u_I} - \mathbf{u_2}) \cdot \nabla \alpha_2 + \mu \frac{\Gamma_2}{\alpha_2} \left[p_I - \rho_2^2 \left(\frac{\partial e_2}{\partial \rho_2} \right)_{p_2} \right] (p_1 - p_2) + \lambda \frac{\Gamma_2}{\alpha_2} (\mathbf{u_I} - \mathbf{u_2}) (\mathbf{u_1} - \mathbf{u_2}) + \frac{\Gamma_2}{\alpha_2} H(T_1 - T_2) \end{split}$$

• Γ_K : Gruneisen coefficient of phase k

$$\Gamma_k = \frac{1}{\rho_k} \left(\frac{\partial p_k}{\partial e_k} \right)_{\rho_k}$$

- 5 equation model (pressure-velocity relaxation model)
 - From the asymptotic limit of non-equilibrium multiphase model (7 eq.)
 - Asymptotic limit: the least effect term(or no meaning term) is removed.
 - In the limit of stiff mechanical relaxation μ , $\lambda(1/\epsilon) \rightarrow \infty$
 - Velocity and pressure reach equilibrium state $(p_1 = p_2 = p_{eq}, \ \mathbf{u_1} = \mathbf{u_2} = \mathbf{u_{eq}})$

$$\frac{\partial \alpha_{1}}{\partial t} + \boldsymbol{u} \cdot \nabla \alpha_{1} = \frac{\alpha_{1}\alpha_{2}(\rho_{2}c_{2}^{2} - \rho_{1}c_{1}^{2})}{\alpha_{2}\rho_{1}c_{1}^{2} + \alpha_{1}\rho_{2}c_{2}^{2}} \operatorname{div}(\boldsymbol{u}) + \frac{\alpha_{1}\alpha_{2}}{\alpha_{2}\rho_{1}c_{1}^{2} + \alpha_{1}\rho_{2}c_{2}^{2}} \left(\frac{\Gamma_{1}}{\alpha_{1}} + \frac{\Gamma_{2}}{\alpha_{2}}\right) H(T_{2} - T_{1})$$

$$\frac{\partial \alpha_{1}\rho_{1}}{\partial t} + \operatorname{div}(\alpha_{1}\rho_{1}\boldsymbol{u}) = 0, \qquad \frac{\partial \alpha_{2}\rho_{2}}{\partial t} + \operatorname{div}(\alpha_{2}\rho_{2}\boldsymbol{u}) = 0$$

$$\frac{\partial \rho \boldsymbol{u}}{\partial t} + \operatorname{div}(\rho \boldsymbol{u} \times \boldsymbol{u}) + \nabla p = 0$$

$$\frac{\partial \rho \boldsymbol{E}}{\partial t} + \operatorname{div}(\boldsymbol{u}(\rho E + p)) = 0$$

- Mixture density: $\rho = \alpha_1 \rho_1 + \alpha_2 \rho_2$
- Mixture total energy:

$$E = \frac{\alpha_1 \rho_1}{\rho} E_1 + \frac{\alpha_2 \rho_2}{\rho} E_2$$

- Unconditionally hyperbolic
 - Characteristic wave speeds; u, $u + c_w$, $u c_w$ $\frac{1}{\rho c_w^2} = \frac{\alpha_1}{\rho_1 c_1^2} + \frac{\alpha_2}{\rho_2 c_2^2}$
 - c_w (Wood speed of sound) has non-monotonic behavior versus volume fraction (α)

- 5 equation model (pressure-velocity relaxation model)
 - Effect of mass transfer
 - A finite rate of mass transfer

$$\frac{\partial \alpha_{1}}{\partial t} + \boldsymbol{u} \cdot \nabla \alpha_{1} = \frac{\alpha_{1}\alpha_{2}(\rho_{2}c_{2}^{2} - \rho_{1}c_{1}^{2})}{\alpha_{2}\rho_{1}c_{1}^{2} + \alpha_{1}\rho_{2}c_{2}^{2}} \operatorname{div}(\boldsymbol{u}) + \frac{\alpha_{1}\alpha_{2}}{\alpha_{2}\rho_{1}c_{1}^{2} + \alpha_{1}\rho_{2}c_{2}^{2}} \left(\frac{\Gamma_{1}}{\alpha_{1}} + \frac{\Gamma_{2}}{\alpha_{2}}\right) H(T_{2} - T_{1}) + \frac{\rho \dot{\boldsymbol{Y}}}{\boldsymbol{\rho}_{I}}$$

$$\frac{\partial \alpha_{1}\rho_{1}}{\partial t} + \operatorname{div}(\alpha_{1}\rho_{1}\boldsymbol{u}) = \rho \dot{\boldsymbol{Y}}$$

$$\frac{\partial \alpha_{2}\rho_{2}}{\partial t} + \operatorname{div}(\alpha_{2}\rho_{2}\boldsymbol{u}) = -\rho \dot{\boldsymbol{Y}}$$

$$\frac{\partial \rho \boldsymbol{u}}{\partial t} + \operatorname{div}(\rho \boldsymbol{u} \times \boldsymbol{u}) + \nabla p = 0$$

$$\frac{\partial \rho E}{\partial t} + \operatorname{div}(\boldsymbol{u}(\rho E + p)) = 0$$

- Determination for mass transfer (\dot{Y}) , interface density (ρ_I)
 - Entropy production eq.

$$\dot{Y}_{k} \frac{ds_{k}}{dt} = \pm \frac{H(T_{2} - T_{1})}{\rho T_{k}} \pm \frac{\dot{Y}_{k}(h_{2} - h_{1})}{\frac{\Gamma_{k} T_{k}}{\alpha_{k}} \left(\frac{\alpha_{1}}{\Gamma_{1}} + \frac{\alpha_{2}}{\Gamma_{2}}\right)} + \frac{\dot{Y}_{k}}{T_{k} \left(\frac{\Gamma_{1}}{\alpha_{1}} + \frac{\Gamma_{1}}{\alpha_{1}}\right)} \left(\frac{\rho_{1} c_{1}^{2}}{\alpha_{1}} + \frac{\rho_{2} c_{2}^{2}}{\alpha_{2}} - \left(\frac{c_{1}^{2}}{\alpha_{1}} + \frac{c_{2}^{2}}{\alpha_{2}}\right)\right)$$
by heat exchange

by pressure relaxation process caused by mass transfer

- 5 equation model (pressure-velocity relaxation model)
 - Determination for mass transfer (\dot{Y}) , interface density (ρ_I)
 - Entropy production eq.

$$\dot{Y}_k \frac{ds_k}{dt} = \pm \frac{H(T_2 - T_1)}{\rho T_k} \pm \frac{\dot{Y}_k(h_2 - h_1)}{\frac{\Gamma_k T_k}{\alpha_k} \left(\frac{\alpha_1}{\Gamma_1} + \frac{\alpha_2}{\Gamma_2}\right)} + \frac{\dot{Y}_k}{T_k \left(\frac{\Gamma_1}{\alpha_1} + \frac{\Gamma_1}{\alpha_1}\right)} \left(\frac{\frac{\rho_1 c_1^2}{\alpha_1} + \frac{\rho_2 c_2^2}{\alpha_2}}{\rho_I} - \left(\frac{c_1^2}{\alpha_1} + \frac{c_2^2}{\alpha_2}\right)\right)$$

by pressure relaxation process caused by mass transfer

During mass transfer, pressure perturbations occurs. ($\dot{m} \leftrightarrow \Delta p$)

- → wave propagation by pressure perturbations makes vapour phase (evaporation)
- → evaporation is a continuous phenomenon
- → waves that cause evaporation are necessarily weak (**isentropic**)

$$\frac{\dot{Y}_k}{T_k \left(\frac{\Gamma_1}{\alpha_1} + \frac{\Gamma_1}{\alpha_1}\right)} \left(\frac{\frac{\rho_1 c_1^2}{\alpha_1} + \frac{\rho_2 c_2^2}{\alpha_2}}{\boldsymbol{\rho_I}} - \left(\frac{c_1^2}{\alpha_1} + \frac{c_2^2}{\alpha_2}\right)\right) = 0$$

$$ho_I = rac{ rac{
ho_1 c_1^2}{lpha_1} + rac{
ho_2 c_2^2}{lpha_2}}{rac{c_1^2}{lpha_1} + rac{c_2^2}{lpha_2}}$$

- 5 equation model (pressure-velocity relaxation model)
 - Determination for mass transfer (\dot{Y}) , interface density (ρ_I)
 - Thermodynamics 2nd law

$$\frac{H(T_2 - T_1)^2}{\rho} + (\bar{g}_2 - \bar{g}_1)T_I\dot{Y} \ge 0$$

• T_I : interface temperature

$$T_{I} = \frac{\left(\frac{\Gamma_{1}T_{1}}{\alpha_{1}} + \frac{\Gamma_{2}T_{2}}{\alpha_{2}}\right)}{\left(\frac{\Gamma_{1}}{\alpha_{1}} + \frac{\Gamma_{2}}{\alpha_{2}}\right)} \ (\geq 0)$$

• \bar{g}_k : gibbs free energy

$$\bar{g}_k = h_k - \frac{T_1 T_2}{T_I} s_k$$

→ To satisfy thermodynamics 2^{nd} law, \dot{Y} have to be $\dot{Y} = \nu(\bar{g}_2 - \bar{g}_1)$ where ν is a positive relaxation parameter that controls the rate at which the mixture relaxes to thermodynamic equilibrium.

• 5 equation model (pressure-velocity relaxation model)

• Final form

$$\frac{\partial \alpha_{1}}{\partial t} + \boldsymbol{u} \cdot \nabla \alpha_{1} = \frac{\alpha_{1}\alpha_{2}(\rho_{2}c_{2}^{2} - \rho_{1}c_{1}^{2})}{\alpha_{2}\rho_{1}c_{1}^{2} + \alpha_{1}\rho_{2}c_{2}^{2}} \operatorname{div}(\boldsymbol{u}) + \frac{\alpha_{1}\alpha_{2}}{\alpha_{2}\rho_{1}c_{1}^{2} + \alpha_{1}\rho_{2}c_{2}^{2}} \left(\frac{\Gamma_{1}}{\alpha_{1}} + \frac{\Gamma_{2}}{\alpha_{2}}\right) H(T_{2} - T_{1}) + \rho \nu(\bar{g}_{2} - \bar{g}_{1}) \frac{\frac{c_{1}^{2}}{\alpha_{1}} + \frac{c_{2}^{2}}{\alpha_{2}}}{\frac{\rho_{1}c_{1}^{2}}{\alpha_{1}} + \frac{\rho_{2}c_{2}^{2}}{\alpha_{2}}}$$

$$\frac{\partial \alpha_{1}\rho_{1}}{\partial t} + \operatorname{div}(\alpha_{1}\rho_{1}\boldsymbol{u}) = \rho \nu(\bar{g}_{2} - \bar{g}_{1})$$

$$\frac{\partial \alpha_{2}\rho_{2}}{\partial t} + \operatorname{div}(\alpha_{2}\rho_{2}\boldsymbol{u}) = \rho \nu(\bar{g}_{1} - \bar{g}_{2})$$

$$\frac{\partial \rho \boldsymbol{u}}{\partial t} + \operatorname{div}(\rho \boldsymbol{u} \times \boldsymbol{u}) + \nabla p = 0$$

$$\frac{\partial \rho \boldsymbol{E}}{\partial t} + \operatorname{div}(\boldsymbol{u}(\rho E + p)) = 0$$

Solution procedure

- Hyperbolic solver (H, $\nu = 0$)
 - For locations far from the interfaces
- Stiff thermo-chemical solver $(H, \nu \rightarrow \infty)$
 - Near the interfaces ($\epsilon \le \alpha_1 \le 1 \epsilon$), relaxation can be assumed as a considerable rate.
 - If interface is simple contact (water non condensable gas), H, $\nu = 0$

- 5 equation model (pressure-velocity relaxation model)
 - Solution procedure
 - Hyperbolic solver $(H, \nu = 0)$ with heat and mass transfer

$$\begin{split} \frac{\partial \alpha_1}{\partial t} + \boldsymbol{u} \cdot \nabla \alpha_1 &= \frac{\alpha_1 \alpha_2 (\rho_2 c_2^2 - \rho_1 c_1^2)}{\alpha_2 \rho_1 c_1^2 + \alpha_1 \rho_2 c_2^2} \operatorname{div}(\boldsymbol{u}) \quad \text{Non-conservative term} \\ \frac{\partial \alpha_1 \rho_1}{\partial t} + \operatorname{div}(\alpha_1 \rho_1 \boldsymbol{u}) &= 0 \\ \frac{\partial \alpha_2 \rho_2}{\partial t} + \operatorname{div}(\alpha_2 \rho_2 \boldsymbol{u}) &= 0 \\ \frac{\partial \rho \boldsymbol{u}}{\partial t} + \operatorname{div}(\rho \boldsymbol{u} \times \boldsymbol{u}) + \nabla p &= 0 \\ \frac{\partial \rho E}{\partial t} + \operatorname{div}(\boldsymbol{u}(\rho E + p)) &= 0 \end{split}$$

- → At each time step, non-equilibrium flow field's variables can be obtained.
- Volume fraction equations is non-conservation form.
 - The Riemann problem can't be solved because conventional shock relations aren't be used. So, The conventional Godunov-type schemes are not suitable.
 - The average of the volume fraction variable within a computational cell has no physical meaning.

(cf. Petitpas et al., 2007, Saurel et al., 2007)

• 5 equation model (pressure-velocity relaxation model)

- Solution procedure
 - Stiff thermo-chemical solver $(H, \nu \to \infty)$, ODEs

$$\frac{\partial \alpha_{1}}{\partial t} = \frac{\alpha_{1}\alpha_{2}}{\alpha_{2}\rho_{1}c_{1}^{2} + \alpha_{1}\rho_{2}c_{2}^{2}} \left(\frac{\Gamma_{1}}{\alpha_{1}} + \frac{\Gamma_{2}}{\alpha_{2}}\right) Q + \rho \dot{Y} \frac{\frac{c_{1}^{2}}{\alpha_{1}} + \frac{c_{2}^{2}}{\alpha_{2}}}{\frac{\rho_{1}c_{1}^{2}}{\alpha_{1}} + \frac{\rho_{2}c_{2}^{2}}{\alpha_{2}}} = \mathbf{S}_{\alpha_{1}}$$

$$\frac{\partial \alpha_{1}\rho_{1}}{\partial t} = \rho \dot{Y} = \mathbf{S}_{Y}, \quad \frac{\partial \alpha_{2}\rho_{2}}{\partial t} = -\rho \dot{Y}$$

$$\frac{\partial \rho \mathbf{u}}{\partial t} = 0, \quad \frac{\partial \rho E}{\partial t} = 0$$

- → It solved at **the interfaces** between water and vapour only.
- Closure relations for Q(=f(H,T)) and $\dot{Y}(=h(v,g))$ regarding relaxation parameter H and v.

$$\frac{\partial \Delta T}{\partial t} = AQ + B\dot{Y}, \qquad \frac{\partial \Delta g}{\partial t} = A'Q + B'\dot{Y}$$

Where A, B, A', B' are functions of all flow variables and that dependent to specific EOS. (ex. SG EOS, etc.)

$$\frac{(\Delta T)^{n+1} - (\Delta T)^n}{\Delta t} = A^n Q^n + B^n \dot{Y}^n, \qquad \frac{(\Delta g)^{n+1} - (\Delta g)^n}{\Delta t} = A'^n Q^n + B'^n \dot{Y}^n$$

• 5 equation model (pressure-velocity relaxation model)

- Solution procedure
 - Closure relations for Q(=f(H,T)) and $\dot{Y}(=h(v,g))$ regarding relaxation parameter H and v.
 - The variables at time t^n is obtained by the non-conservation hyperbolic solver.
 - Infinite relaxation \rightarrow the equilibrium has to be reached at the end of each time step (Δt) which imposed by CFL condition (explicit time scheme).

$$\rightarrow (\Delta T)^{n+1} = 0, (\Delta g)^{n+1} = 0$$

$$Q = -\frac{B'}{AB' - A'B} \frac{(\Delta T)^n}{\Delta t} - \frac{B}{AB' - A'B} \frac{(\Delta g)^n}{\Delta t}, \qquad \dot{Y} = \frac{A'}{AB' - A'B} \frac{(\Delta T)^n}{\Delta t} - \frac{A}{AB' - A'B} \frac{(\Delta g)^n}{\Delta t}$$

• For preventing solution(α , Y) from stiff thermo-chemical solver to be negative,

$$S_{max,\alpha_1} = \begin{cases} \frac{1-\alpha_1}{\Delta t}, & \text{if } S_{\alpha_1} > 0\\ \frac{-\alpha_1}{\Delta t}, & \text{otherwise} \end{cases}$$
 $S_{max,Y} = \begin{cases} \frac{1-Y}{\Delta t}, & \text{if } S_Y > 0\\ \frac{-Y}{\Delta t}, & \text{otherwise} \end{cases}$

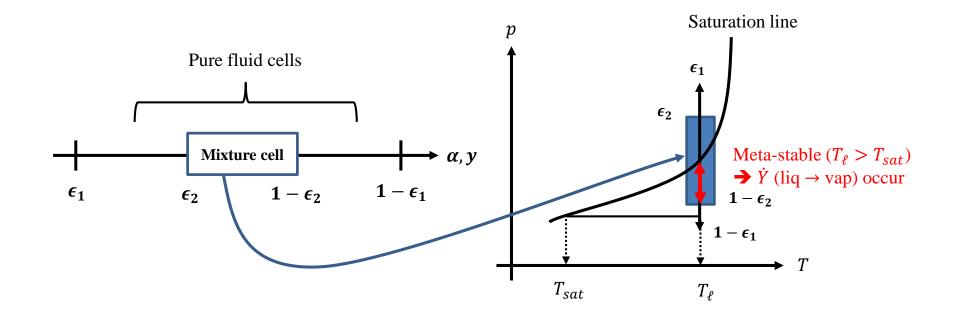
If it not satisfy $|S_{max,\alpha_1}| > |S_{\alpha_1}|$ and $|S_{max,Y}| > |S_{Y_1}|$, equation are stiff and time step has to be reduced.

• Cf. stiff thermo-chemical solver is integrated over a fraction of the time step

$$\Delta t = \frac{S_{max,\alpha_1}}{S_{\alpha_1}} \frac{\Delta t}{2}$$

• 5 equation model (pressure-velocity relaxation model)

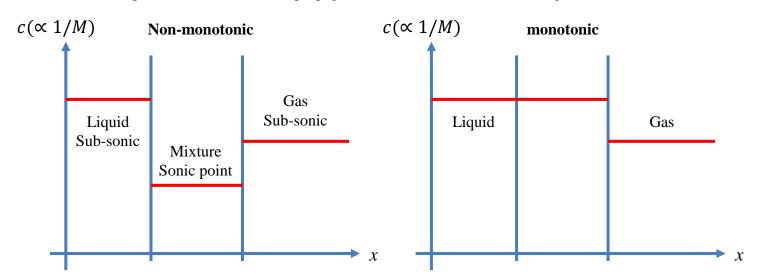
- Solution procedure
 - Location of interfaces
 - volume(α) and mass(Y) fractions $\rightarrow 1 (1 \epsilon_1, \ \epsilon_1 = 10^{-8}) \rightarrow$ pure fluid cells
 - $\epsilon_2 \le \alpha, y \le 1 \epsilon_2$, $\epsilon_2 = 10^{-6}$ \rightarrow mixture cells; **interfaces**
 - If ϵ_2 is taken too close to ϵ_1 , evaporation may occur too early and not only in the interfacial zone (can occur during expansion waves).
 - If one of the fluids in the mixture cell is metastable $(T_k > T_{sat}(p))$, mass transfer(\dot{Y}) is occured.



- 6 equation model (velocity relaxation model, finally p v relxation)
 - Strength (vs 5 equation model)
 - The existence of non-conservative contribution in the volume fraction eq. of 5 equation model
 - Because of the variation of the volume fraction across the acoustic wave, the approximate Riemann solvers are not suitable.
 - When shocks and strong rarefaction wave are involved, volume fraction may be negative.

$$\frac{\partial \alpha_1}{\partial t} + \boldsymbol{u} \cdot \nabla \alpha_1 = \frac{\alpha_1 \alpha_2 (\rho_2 c_2^2 - \rho_1 c_1^2)}{\alpha_2 \rho_1 c_1^2 + \alpha_1 \rho_2 c_2^2} \operatorname{div}(\boldsymbol{u}) \quad \text{Non-conservative term}$$

- The non-monotonic behavior of 5 equation model
 - In the numerical diffusion of an interface, non-monotonic speed of sound can make two sonic points. (even when the flow is subsonic in both pure fluids) → affect the propagation of acoustic waves interacting with the interfacial zone.



- 6 equation model (velocity relaxation model, finally p v relxation)
 - Volume fraction eq.

$$\frac{\partial \alpha_1}{\partial t} + \boldsymbol{u} \cdot \nabla \alpha_1 = \mu(p_1 - p_2)$$

- Each phase's balance eq. (k = 1,2)
 - Energy eq. are based on internal energy $(\rho_k \varepsilon_k)$.

$$\frac{\partial \alpha_1 \rho_1}{\partial t} + \operatorname{div}(\alpha_1 \rho_1 \boldsymbol{u}) = 0$$

$$\frac{\partial \alpha_1 \rho_1 \varepsilon_1}{\partial t} + \operatorname{div}(\alpha_1 \rho_1 \varepsilon_1 \boldsymbol{u}) + \alpha_1 p_1 \nabla \cdot \boldsymbol{u} = \mu p_I (p_2 - p_1)$$

$$\frac{\partial \alpha_2 \rho_2}{\partial t} + \operatorname{div}(\alpha_2 \rho_2 \boldsymbol{u}) = 0$$

$$\frac{\partial \alpha_2 \rho_2 \varepsilon_2}{\partial t} + \operatorname{div}(\alpha_2 \rho_2 \varepsilon_2 \boldsymbol{u}) + \alpha_2 p_2 \nabla \cdot \boldsymbol{u} = \mu p_I (p_1 - p_2)$$

- \rightarrow Where interface pressure is determined similar to 7 eq model's way. $p_I = (Z_1p_1 + Z_2p_2)/(Z_1 + Z_2)$
- Mixture momentum eq.

$$\frac{\partial \rho \mathbf{u}}{\partial t} + \operatorname{div}(\rho \mathbf{u} \times \mathbf{u}) + \nabla(\alpha_1 p_1 + \alpha_2 p_2) = 0$$

→ With only pressure relaxation term, not temperature relaxation term.

- 6 equation model (velocity relaxation model, finally p v relxation)
 - Energy eq. are based on total energy (E_k) .

$$\frac{\partial \alpha_1 E_1}{\partial t} + \operatorname{div}(\alpha_1 E_1 \boldsymbol{u} + \alpha_1 p_1 \boldsymbol{u}) + \Sigma(q, \nabla q) = \mu p_I(p_2 - p_1)$$

$$\frac{\partial \alpha_2 E_2}{\partial t} + \operatorname{div}(\alpha_2 E_2 \boldsymbol{u} + \alpha_2 p_2 \boldsymbol{u}) - \Sigma(q, \nabla q) = \mu p_I(p_1 - p_2)$$

Non-conservation term

$$\Sigma(q, \nabla q) = -\boldsymbol{u} \cdot \left(Y_2 \nabla(\alpha_1 p_1) - Y_1 \nabla(\alpha_2 p_2) \right) = -\boldsymbol{u} \cdot \left((Y_2 p_1 + Y_1 p_2) \nabla \alpha_1 + \alpha_1 Y_2 \nabla p_1 - \alpha_2 Y_1 \nabla p_2 \right)$$

• Although phasic total energy eq. are non-conservative form, mixture total energy is conservative.

$$\frac{\partial E}{\partial t} + \nabla \cdot (Eu + \alpha_1 p_1 u + \alpha_2 p_2 u) = 0$$

→ Beneficial to satisfy "Mixture energy consistent discretization"

- 6 equation model (velocity relaxation model, finally p v relxation)
 - With heat and mass transfer

$$\begin{split} \frac{\partial \alpha_1}{\partial t} + \boldsymbol{u} \cdot \nabla \alpha_1 &= \mu(p_1 - p_2) + \frac{\dot{\boldsymbol{m}}}{\boldsymbol{\rho_I}} \\ & \frac{\partial \alpha_1 \rho_1}{\partial t} + \operatorname{div}(\alpha_1 \rho_1 \boldsymbol{u}) = \dot{\boldsymbol{m}} \\ & \frac{\partial \alpha_2 \rho_2}{\partial t} + \operatorname{div}(\alpha_2 \rho_2 \boldsymbol{u}) = -\dot{\boldsymbol{m}} \\ & \frac{\partial \rho \boldsymbol{u}}{\partial t} + \operatorname{div}(\rho \boldsymbol{u} \times \boldsymbol{u}) + \nabla(\alpha_1 p_1 + \alpha_2 p_2) = 0 \\ & \frac{\partial \alpha_1 E_1}{\partial t} + \operatorname{div}(\alpha_1 E_1 \boldsymbol{u} + \alpha_1 p_1 \boldsymbol{u}) + \Sigma(q, \nabla q) = \mu p_I(p_2 - p_1) + \boldsymbol{Q} + \boldsymbol{e_I} \dot{\boldsymbol{m}} \\ & \frac{\partial \alpha_2 E_2}{\partial t} + \operatorname{div}(\alpha_2 E_2 \boldsymbol{u} + \alpha_2 p_2 \boldsymbol{u}) - \Sigma(q, \nabla q) = \mu p_I(p_1 - p_2) - \boldsymbol{Q} - \boldsymbol{e_I} \dot{\boldsymbol{m}} \end{split}$$

Where,

$$\Sigma(q, \nabla q) = -\boldsymbol{u} \cdot \left(Y_2 \nabla(\alpha_1 p_1) - Y_1 \nabla(\alpha_2 p_2) \right) = -\boldsymbol{u} \cdot \left((Y_2 p_1 + Y_1 p_2) \nabla \alpha_1 + \alpha_1 Y_2 \nabla p_1 - \alpha_2 Y_1 \nabla p_2 \right)$$

$$\boldsymbol{Q} = \boldsymbol{H}(\boldsymbol{T}_2 - \boldsymbol{T}_1), \qquad H = \begin{cases} \infty, & \text{if } 10^4 \le \alpha_1 \le 1 - \epsilon_1 \\ 0, & \text{otherwise} \end{cases}$$

$$\boldsymbol{m} = \boldsymbol{v}(\boldsymbol{g}_2 - \boldsymbol{g}_1), \qquad \boldsymbol{v} = \begin{cases} \infty, & \text{if } \epsilon_1 \le \alpha_1 \le 1 - \epsilon_1 \text{ and } T_{liq} > T_{sat} \\ 0, & \text{otherwise} \end{cases}$$

• 6 equation model (velocity relaxation model, finally p - v relxation)

Compact form

$$\partial_t q + \nabla \cdot f(q) + \sigma(q, \nabla q) = \psi_{\mu}(q) + \psi_{\mu}(q) + \psi_{\nu}(q)$$

 $\nabla \cdot f(q)$: conservative term

 $\sigma(q, \nabla q)$: non-conservative term

 ψ_{μ} : mechanical relaxation term

 ψ_H : thermal relaxation term

 ψ_{ν} : chemical relaxation term

Solution with only mechanical relaxation term

Homogenous hyperbolic solver (step 1) – represented superscript 0

$$\partial_t q + \nabla \cdot f(q) + \sigma(q, \nabla q) = 0$$

- Stiff mechanical relaxation solver (ODEs) (step 2) represented superscript *
 - the limit $\mu \to \infty$, $p_{\ell} = p_{\nu} = p$, not only at liquid-vapour interfaces

$$\partial_t q = \psi_\mu(q)$$

- The partial densities $(\alpha_k \rho_k)$, mixture momentum $(\rho \mathbf{u})$, mixture total energy (E), mixture internal energy (E) remain constant because these aren't related to mechanical relaxation term (μ) .
- $\rightarrow (\alpha_k \rho_k)^0 = (\alpha_k \rho_k)^*, (\rho \mathbf{u})^0 = (\rho \mathbf{u})^*, E^0 = E^*, \varepsilon^0 = \varepsilon^*$
- The volume fraction (α_1) , mixture pressure (p), phasic internal energies $(\alpha_k \varepsilon_k)$ are updated by "stiff mechanical solver"
- $\rightarrow \alpha_1^0 \neq \alpha_1^*, \ p^0 \neq p^*, \ (\alpha_k \varepsilon_k)^0 \neq (\alpha_k \varepsilon_k)^*$

• 6 equation model (velocity relaxation model, finally p - v relxation)

- Mixture energy consistent discretization
 - For numerical solutions of multiphase, the quantities (partial density $\alpha_k \rho_k$, mixture density ρ , mixture momentum ρu , mixture energy E) have to be conserved.
 - numerical approximation of non-conservative term cause the inaccurate solutions in the shock.
 - → Godunov-type schemes can easily preserve conservation at the discrete level of quantities.
 - 6 eq model does not contain the total energy conservation eq., but two phasic energy eq.
 - → To be conservation of total energy at the discrete level and be consistent with the correct thermodynamics state, the phasic energy eq. have to be discretized.
 - Postulations of Mixture energy consistent
 - Mixture total energy conservation consistency

$$E^0 = \Sigma(\alpha_k E_k)^0 = E^{0,C}$$

 $E^{0,C}$: discrete values of the mixture total energy by numerical approximation of total energy eq.

$$(\partial_t E + \nabla \cdot (Eu + \alpha_1 p_1 u + \alpha_2 p_2 u) = 0)$$

- → the sum of the discrete values of the phasic total energies by step 1 must be equal discrete values of the mixture total energy.
- Relaxed pressure consistency

Mixture energy using mixture EOS derived under pressure equilibrium (mixture energy is constant)

$$\varepsilon^{0,C} = E^{0,C} - \frac{(\rho \boldsymbol{u})^0 \cdot (\rho \boldsymbol{u})^0}{2\rho^0} = \Sigma \alpha_k^* \varepsilon_k \left(p^*, \frac{(\alpha_k \rho_k)^0}{\alpha_k^*} \right) \quad \text{Sum of after properties} \quad \text{(partial)}$$

 \rightarrow p^* (equilibrium) solved by step 2 must be equal the pressure computed by the mixture equation of state (: To derive mixture equation of state, it assumed that pressure equilibrium is reached.)

- 6 equation model (velocity relaxation model, finally p v relxation)
 - Mixture energy consistent discretization
 - Postulations of Mixture energy consistent
 - For **phasic total energy eq.**, a standard conservative schemes are used to conservative term

$$\partial_t(\alpha_k E_k) + \nabla \cdot (\alpha_k E_k \boldsymbol{u} + \alpha_k p_k \boldsymbol{u})$$

- Symmetrically discretized non-conservative term $\Sigma(q, \nabla q)$ result in conservative discrete form of the mixture energy eq. (: cancellation of non-conservative discrete contributions)
- Mixture total energy conservation consistency → Relaxed pressure consistency
- \rightarrow This process ensure to satisfy the postulations of mixture energy consistent and guarantee thermodynamically correct value of the equilibrium pressure p^* (mixture total energy consistent)
- The difficulty with phasic internal energy eq.
 - Discretized phasic internal energies eq. \rightarrow a conservative discrete form of mixture total energy eq.
 - \rightarrow The additional mixture total energy eq. is required to correct the thermodynamic state predicted by the non-conservative internal energy eq.
 - It is not guarantee the relaxed pressure consistency (cf. Suerl et al., 2009)

- 6 equation model (velocity relaxation model, finally p v relxation)
 - Mixture energy consistent discretization
 - Stiff mechanical relaxation solver (ODEs)

$$\begin{split} \partial_t \alpha_1 &= \mu(p_1 - p_2), \qquad \partial_t (\alpha_1 E_1) = \mu p_I(p_2 - p_1), \qquad \partial_t (\alpha_2 E_2) = \mu p_I(p_1 - p_2) \\ \partial_t (\alpha_k \rho_k) &= 0, \qquad \partial_t (\rho \boldsymbol{u}) = 0 \end{split}$$

• The partial densities $(\alpha_k \rho_k)$, mixture momentum $(\rho \mathbf{u})$ remain constant because the equations doesn't contain mechanical relaxation term (μ) .

$$(\alpha_k \rho_k)^0 = (\alpha_k \rho_k)^*, \qquad (\rho \mathbf{u})^0 = (\rho \mathbf{u})^* \to \rho_0 = \rho^*, \qquad \mathbf{u}^0 = \mathbf{u}^*$$

Combining upper equations

$$\partial_t(\alpha_1 E_1) = \partial_t(\alpha_1 \rho_1 \varepsilon_1) = -p_I \partial_t \alpha_1, \qquad \partial_t(\alpha_2 E_2) = \partial_t(\alpha_2 \rho_2 \varepsilon_2) = p_I \partial_t \alpha_1$$

the sum of the phasic equations is zero.

$$\partial_t E = \partial_t (\rho \varepsilon) = 0 \to E^0 = E^*, \qquad (\rho \varepsilon)^0 = (\rho \varepsilon)^*$$

- \rightarrow Mixture total and internal energy are constant as the phasic pressure (p_k) reach equilibrium pressure (p^*) (under step 2)
- Interface pressure (p_I) assuming a linear variation with α_1

$$p_{I}=p_{I}^{0}rac{p_{I}^{*}-p_{0}^{*}}{lpha_{1}^{*}-lpha_{1}^{0}}(lpha_{1}-lpha_{1}^{0})$$

• 6 equation model (velocity relaxation model, finally p - v relxation)

- Mixture energy consistent discretization
 - Stiff mechanical relaxation solver (ODEs)

$$\begin{split} \int_{\text{step1(0)}}^{\text{step2(*)}} \partial_{t}(\alpha_{1}E_{1}) &= \int_{\text{step1(0)}}^{\text{step2(*)}} \partial_{t}(\alpha_{1}\rho_{1}\varepsilon_{1}) = \int_{\text{step1(0)}}^{\text{step2(*)}} -p_{I}^{0} \frac{p_{I}^{*} - p_{0}^{*}}{\alpha_{1}^{*} - \alpha_{1}^{0}} (\alpha_{1} - \alpha_{1}^{0}) \partial_{t}\alpha_{1} \\ \int_{\text{step1(0)}}^{\text{step2(*)}} \partial_{t}(\alpha_{2}E_{2}) &= \int_{\text{step1(0)}}^{\text{step2(*)}} \partial_{t}(\alpha_{2}\rho_{2}\varepsilon_{2}) = \int_{\text{step1(0)}}^{\text{step2(*)}} p_{I}^{0} \frac{p_{I}^{*} - p_{0}^{*}}{\alpha_{1}^{*} - \alpha_{1}^{0}} (\alpha_{1} - \alpha_{1}^{0}) \partial_{t}\alpha_{1} \\ (\alpha_{1}E_{1})^{*} - (\alpha_{1}E_{1})^{0} &= (\alpha_{1}\varepsilon_{1})^{*} - (\alpha_{1}\varepsilon_{1})^{0} = -\frac{p_{I}^{0} + p_{I}^{*}}{2} (\alpha_{1}^{*} - \alpha_{1}^{0}) \\ (\alpha_{2}E_{2})^{*} - (\alpha_{2}E_{2})^{0} &= (\alpha_{2}\varepsilon_{2})^{*} - (\alpha_{2}\varepsilon_{2})^{0} = \frac{p_{I}^{0} + p_{I}^{*}}{2} (\alpha_{1}^{*} - \alpha_{1}^{0}) \end{split}$$

- In the limit $\mu \to \infty$, $p_1^* = p_2^* = p_1^* = p$ and internal energy at final time $(\rho_k \varepsilon_k)^* = f(p^*, (\alpha_k \rho_k)^0 / \alpha_k^*)$ with together specific EOS (ex. SGEOS, etc.) $\rightarrow p^*$, α_1^*
- Using p^* , α_1^* , the relaxed pressure consistency can be verified (through mixture pressure law).

$$p^* = p\left(\varepsilon^0, \alpha_1^*, \frac{(\alpha_k \rho_k)^0}{\alpha_k^*}\right)$$

Where $(\rho \varepsilon)^0 = (\rho \varepsilon)^*$, $(\alpha_k \rho_k)^0 = (\alpha_k \rho_k)^*$

: Conservation-consistent discrete values of the mixture total energy, $E^0 = \Sigma(\alpha_k E_k)^0 = E^{0,C}$

→ Relaxed pressure consistency, $\varepsilon^0 = E^0 - \frac{(\rho u)^0 \cdot (\rho u)^0}{2\rho^0} = \alpha_1^* \ \varepsilon_1 \left(\boldsymbol{p}^*, \frac{(\alpha_1 \rho_1)^0}{\alpha_1^*} \right) + \alpha_2^* \varepsilon_2 \left(\boldsymbol{p}^*, \frac{(\alpha_2 \rho_2)^0}{\alpha_2^*} \right)$

- 6 equation model (velocity relaxation model, finally p v relxation)
 - Solution with thermal and chemical relaxation terms
 - Mechanical relaxation time < thermal-chemical relaxation time</p>
 - Thermal and chemical relaxation occur under mechanical relaxation (pressure equilibrium).
 - Stiff thermal relaxation solver (ODEs) (step 3) represented superscript **
 - the limit $H \to \infty$, $T_{\ell} = T_{\nu} = T$, at only liquid vapour interfaces

$$\begin{split} \partial_t q &= \psi_{\mu}(q) + \psi_{H}(q) \\ \partial_t \alpha_1 &= \mu(p_1 - p_2) \\ \partial_t (\alpha_k \rho_k) &= 0, \qquad \partial_t (\rho \mathbf{u}) = 0 \\ \partial_t (\alpha_1 E_1) &= \mu p_I(p_2 - p_1) + H(T_2 - T_1), \qquad \partial_t (\alpha_2 E_2) = \mu p_I(p_1 - p_2) + H(T_1 - T_2) \end{split}$$

- The initial values are coming from pressure relaxation solver.
- Metastable condition, $T_{\ell}^{**} > T_{sat}(p^{**})$, is verified through the updated values (with superscript **).
- The partial densities $(\alpha_k \rho_k)$ (of course, mixture density ρ), mixture momentum $(\rho \mathbf{u})$, total energy (E), internal energy $(\rho \varepsilon)$ remain constant because these aren't related to **thermal relaxation term** (H) as well as mechanical relaxation term (μ) .

$$\rightarrow (\alpha_k \rho_k)^0 = (\alpha_k \rho_k)^* = (\alpha_k \rho_k)^{**}, \ (\rho \mathbf{u})^0 = (\rho \mathbf{u})^* = (\rho \mathbf{u})^{**}, \ E^0 = E^* = E^{**}, \varepsilon^0 = \varepsilon^* = \varepsilon^{**}$$

→ Using algebraic system (in case of SGEOS, quadratic eq.), equilibrium pressure (p^{**}) can be obtained. Then, also equilibrium values $\alpha_1^{**}(p^{**})$, $T^{**}(\alpha_1^{**})$ are obtained.

- 6 equation model (velocity relaxation model, finally p v relxation)
 - Solution with thermal and chemical relaxation terms
 - Stiff thermal-chemical relaxation solver (ODEs) (step 4) represented superscript ***
 - Under metastable region which is checked from the step 3, the limit $\nu \to \infty$, $g_{\ell} = g_{\nu}$, at only liquid vapour interfaces

$$\partial_t q = \psi_{\mu}(q) + \psi_{H}(q) + \psi_{\nu}(q)$$

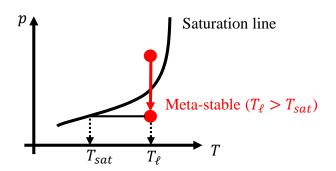
$$\partial_t \alpha_1 = \mu(p_1 - p_2) + \nu \frac{g_2 - g_1}{\rho_I}, \quad \partial_t(\rho \mathbf{u}) = 0$$

$$\partial_t (\alpha_1 \rho_1) = \nu(g_2 - g_1),$$

$$\partial_t (\alpha_2 \rho_2) = \nu(g_1 - g_2)$$

$$\partial_t(\alpha_1 E_1) = \mu p_I(p_2 - p_1) + H(T_2 - T_1) + \nu e_I(g_2 - g_1),$$

$$\partial_t(\alpha_2 E_2) = \mu p_I(p_1 - p_2) + H(T_1 - T_2) + \nu e_I(g_1 - g_2)$$



- The initial values are coming from pressure-temperature relaxation solver.
- The mixture density (ρ) (not partial densities, $\alpha_k \rho_k$, due to $\dot{m} = v(g_2 g_1)$), momentum $(\rho \mathbf{u})$, total energy (E), internal energy (E) remain constant because these aren't related to thermal (H) and **chemical relaxation** (\mathbf{v}) **terms** as well as mechanical relaxation term (μ) .

$$\Rightarrow \rho^0 = \rho^* = \rho^{**} = \rho^{***}, \ (\rho u)^0 = (\rho u)^* = (\rho u)^{**} = (\rho u)^{***}, \ E^0 = E^* = E^{**} = E^{***}, \ \varepsilon^0 = \varepsilon^* = \varepsilon^{**} = \varepsilon^{***}$$

- $ightarrow
 ho^0 = \Sigma \alpha_k^{***} \rho_k^{***}, \ \varepsilon^0 = \Sigma \alpha_k^{***} \varepsilon_k^{***}$
- In these equations, interface variables (ρ_I, e_I) doesn't need to be specified.
- → Using algebraic system (in case of SGEOS, quadratic eq.), equilibrium pressure (p^{***}) can be obtained. Then, also equilibrium values $T^{***}(p^{***})$, $\rho^{***}(p^{***}, T^{***})$, $\alpha_1^{***}(\rho^{***})$ are obtained.

- 5 equation model (pressure-velocity relaxation model)
 - Asymptotic limit with stiff pressure relaxation $(\mu \to \infty)$
 - The equation that contain relaxation parameter (μ) are changed only.
 - Volume fraction equation

$$\frac{\partial \alpha_1}{\partial t} + \vec{u} \cdot \nabla \alpha_1 = \mu(p_1 - p_2) \Rightarrow \frac{d\alpha_1}{dt} = \mu(p_1 - p_2)$$

• Each phasic internal energy equations (with mass balance equation)

$$\frac{\partial \alpha_{1}\rho_{1}e_{1}}{\partial t} + \frac{\partial}{\partial x}(\alpha_{1}\rho_{1}e_{1}\vec{u}) + \alpha_{1}p_{1}\frac{\partial \vec{u}}{\partial x} = \mu p_{I}(p_{2} - p_{1}), \qquad \frac{d}{dt}(\alpha_{1}\rho_{1}) + \alpha_{1}\rho_{1}\frac{\partial \vec{u}}{\partial x} = 0$$

$$\Rightarrow \alpha_{1}\rho_{1}\frac{de_{1}}{dt} + \alpha_{1}p_{1}\frac{d\vec{u}}{dx} = -p_{I}\mu(p_{1} - p_{2})$$

$$\frac{\partial \alpha_2 \rho_2 e_2}{\partial t} + \frac{\partial}{\partial x} (\alpha_2 \rho_2 e_2 \vec{u}) + \alpha_2 p_2 \frac{\partial \vec{u}}{\partial x} = \mu p_I (p_1 - p_2), \qquad \frac{d}{dt} (\alpha_2 \rho_2) + \alpha_2 \rho_2 \frac{\partial \vec{u}}{\partial x} = 0$$

$$\Rightarrow \alpha_2 \rho_2 \frac{de_2}{dt} + \alpha_2 p_2 \frac{d\vec{u}}{dx} = p_I \mu (p_1 - p_2)$$

• Internal energy equations can be expressed as **pressure evolution equations** using $e_1 = e_1(\rho_1, p_1)$.

$$\alpha_1 \rho_1 \left(\frac{\partial e_1}{\partial \rho_1} \bigg|_{p_1} \frac{d \rho_1}{dt} + \frac{\partial e_1}{\partial p_1} \bigg|_{\rho_1} \frac{d p_1}{dt} + \frac{p_1}{\rho_1} \frac{\partial u}{\partial x} \right) = -p_I \mu (p_1 - p_2)$$

- 5 equation model (pressure-velocity relaxation model)
 - Asymptotic limit with stiff pressure relaxation $(\mu \to \infty)$
 - Mass balance equation for phase 1 with volume fraction equation.

$$\frac{d}{dt}(\alpha_{1}\rho_{1}) + \alpha_{1}\rho_{1}\frac{\partial \vec{u}}{\partial x} = 0, \qquad \frac{d\alpha_{1}}{dt} = \mu(p_{1} - p_{2}) \implies \frac{d\rho_{1}}{dt} = -\frac{\rho_{1}}{\alpha_{1}}\mu(p_{1} - p_{2}) - \rho_{1}\frac{\partial \vec{u}}{\partial x}$$

$$\frac{dp_{1}}{dt} + \rho_{1}\frac{\frac{p_{1}}{\rho_{1}^{2}} - \frac{\partial e_{1}}{\partial \rho_{1}}\Big|_{p_{1}}}{\frac{\partial e_{1}}{\partial p_{1}}\Big|_{\rho_{1}}}\frac{\partial \vec{u}}{\partial x} = -\frac{\rho_{1}}{\alpha_{1}}\frac{\frac{p_{I}}{\rho_{1}^{2}} - \frac{\partial e_{1}}{\partial \rho_{1}}\Big|_{p_{1}}}{\frac{\partial e_{1}}{\partial p_{1}}\Big|_{\rho_{1}}}\mu(p_{1} - p_{2})$$

Sound speed definitions

$$c_1^2 = \frac{\frac{p_1}{\rho_1^2} - \frac{\partial e_1}{\partial \rho_1}\Big|_{p_1}}{\frac{\partial e_1}{\partial p_1}\Big|_{\rho_1}}, \qquad c_{1,I}^2 = \frac{\frac{p_I}{\rho_1^2} - \frac{\partial e_1}{\partial \rho_1}\Big|_{p_1}}{\frac{\partial e_1}{\partial p_1}\Big|_{\rho_1}}$$

• Final form

$$\frac{dp_1}{dt} + \rho_1 c_1^2 \frac{\partial \vec{u}}{\partial x} = -\frac{\rho_1}{\alpha_1} c_{1,I}^2 \mu(p_1 - p_2)$$

$$\frac{dp_2}{dt} + \rho_2 c_2^2 \frac{\partial \vec{u}}{\partial x} = \frac{\rho_2}{\alpha_2} c_{2,I}^2 \mu(p_1 - p_2)$$

• 5 equation model (pressure-velocity relaxation model)

- Asymptotic limit with stiff pressure relaxation $(\mu \to \infty)$
 - Asymptotic expansion, $f = f^0 + \epsilon f^1$
 - f^0 : equilibrium state
 - f^1 : small perturbation around this state
 - $\epsilon \to 0^+$: Stiff pressure relaxation

$$\begin{split} \frac{dp_{1}}{dt} + \rho_{1}c_{1}^{2}\frac{\partial\vec{u}}{\partial x} &= -\frac{\rho_{1}}{\alpha_{1}}c_{1,l}^{2}\mu(p_{1} - p_{2}) \\ \Rightarrow \left(\frac{dp_{1}^{0}}{dt} + \epsilon\frac{dp_{1}^{0}}{dt}\right) + (\rho_{1}^{0} + \epsilon\rho_{1}^{0})(c_{1}^{0} + \epsilon\rho_{1}^{0})^{2}\left(\frac{\partial\vec{u}^{0}}{\partial x} + \epsilon\frac{\partial\vec{p}^{0}}{\partial x}\right) &= -\frac{(\rho_{1}^{0} + \epsilon\rho_{1}^{0})}{(\alpha_{1}^{0} + \epsilon\rho_{1}^{0})}\left(c_{1,l}^{0} + \epsilon\rho_{1,l}^{0}\right)^{2}\frac{1}{\epsilon}(p_{1}^{0} + \epsilon p_{1}^{1} - p_{2}^{0} - \epsilon p_{2}^{0}) \\ &\frac{dp_{1}^{0}}{dt} + \rho_{1}^{0}c_{1}^{0}^{2}\frac{\partial\vec{u}^{0}}{\partial x} &= -\frac{\rho_{1}^{0}}{\alpha_{1}^{0}}c_{1,l}^{0}^{2}\frac{1}{\epsilon}(p_{1}^{0} + \epsilon p_{1}^{1} - p_{2}^{0} - \epsilon p_{2}^{0}) \end{split}$$

• Order $1/\epsilon$

$$\frac{1}{\epsilon}(p_1^0 - p_2^0) = 0$$

$$\rightarrow p_1^0 = p_2^0 = p^0 = p_I^0$$

$$\rightarrow c_1^{0^2} = c_{1,I}^{0^2}, c_2^{0^2} = c_{2,I}^{0^2}$$

- 5 equation model (pressure-velocity relaxation model)
 - Asymptotic limit with stiff pressure relaxation $(\mu \to \infty)$
 - Asymptotic expansion, $f = f^0 + \epsilon f^1$
 - Zero order

$$\frac{dp^{0}}{dt} + \rho_{1}^{0}c_{1}^{0^{2}}\frac{\partial \vec{u}^{0}}{\partial x} = -\frac{\rho_{1}^{0}}{\alpha_{1}^{0}}c_{1}^{0^{2}}(p_{1}^{1} - p_{2}^{1})$$

$$\frac{dp^{0}}{dt} + \rho_{2}^{0}c_{2}^{0^{2}}\frac{\partial \vec{u}^{0}}{\partial x} = \frac{\rho_{2}^{0}}{\alpha_{2}^{0}}c_{2}^{0^{2}}(p_{1}^{1} - p_{2}^{1})$$

$$\Rightarrow p_{1}^{1} - p_{2}^{1} = \frac{\rho_{2}^{0}c_{2}^{0^{2}} - \rho_{1}^{0}c_{1}^{0^{2}}}{\frac{\rho_{2}^{0}}{\alpha_{2}^{0}}c_{2}^{0^{2}} + \frac{\rho_{1}^{0}}{\alpha_{1}^{0}}c_{1}^{0^{2}}}\frac{\partial \vec{u}^{0}}{\partial x}$$

• In the limit $\mu \to \infty$, volume fraction equation

$$\because \frac{d\alpha_1}{dt} = \frac{\rho_2 c_2^2 - \rho_1 c_1^2}{\frac{\rho_2}{\alpha_2} c_2^2 + \frac{\rho_1}{\alpha_1} c_1^2} \frac{\partial \vec{u}}{\partial x}$$

Method of Characteristics

- 1D, unsteady isentropic flow
 - Differential equation
 - Mass equation

$$\frac{d\rho}{dt} + \rho \frac{\partial u}{\partial x} = 0$$

Momentum equation

$$\rho \frac{du}{dt} = -p \frac{\partial p}{\partial x}$$

• Energy equation (isentropic equation)

$$\frac{ds}{dt} = 0$$

- Using these equations, it can be expressed by characteristics line form.
 - Non-linear differential equations.

$$\frac{\partial}{\partial t} \left(u + \frac{2}{\gamma - 1} a \right) + (u + a) \frac{\partial}{\partial x} \left(u + \frac{2}{\gamma - 1} a \right) = 0$$

$$\frac{\partial}{\partial t} \left(u - \frac{2}{\gamma - 1} a \right) + (u - a) \frac{\partial}{\partial x} \left(u - \frac{2}{\gamma - 1} a \right) = 0$$

• Because a propagation velocity is different at each point on the wave, wave form are changed.

shock formation in finite compression region.

Method of Characteristics

- 1D, unsteady isentropic flow
 - If assuming small perturbance (weak wave), it has linearity. → acoustic equations

$$\frac{\partial}{\partial t} \left(\frac{u}{a} \right) + a \frac{\partial}{\partial x} \left(\frac{\rho'}{\rho} \right) = 0 \qquad \qquad \frac{\partial}{\partial t} \left(\frac{\rho'}{\rho} \right) + a \frac{\partial}{\partial x} \left(\frac{u}{a} \right) = 0$$

Wave equations

$$\frac{\partial^2}{\partial t^2} \left(\frac{u}{a} \right) - a^2 \frac{\partial^2}{\partial x^2} \left(\frac{u}{a} \right) = 0 \qquad \qquad \frac{\partial^2}{\partial t^2} \left(\frac{\rho'}{\rho} \right) - a^2 \frac{\partial^2}{\partial x^2} \left(\frac{\rho'}{\rho} \right) = 0$$

- Equations can be expressed by other variables $(\eta = x + at, \zeta = x at)$
 - Chain rule

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial \zeta} \frac{\partial \zeta}{\partial t} + \frac{\partial}{\partial \eta} \frac{\partial \eta}{\partial t} = -a \frac{\partial}{\partial \zeta} + a \frac{\partial}{\partial \eta}$$

$$\frac{\partial}{\partial x} = \frac{\partial}{\partial \zeta} \frac{\partial \zeta}{\partial x} + \frac{\partial}{\partial \eta} \frac{\partial \eta}{\partial x} = \frac{\partial}{\partial \zeta} + \frac{\partial}{\partial \eta}$$

$$\frac{\partial^{2}}{\partial t^{2}} = \frac{\partial}{\partial t} \left(\frac{\partial}{\partial t} \right) = \frac{\partial}{\partial \zeta} \left(\frac{\partial}{\partial t} \right) \frac{\partial \zeta}{\partial t} + \frac{\partial}{\partial \eta} \left(\frac{\partial}{\partial t} \right) \frac{\partial \eta}{\partial t} = -a \left(-a \frac{\partial}{\partial \zeta} + a \frac{\partial}{\partial \eta} \right) \frac{\partial}{\partial \zeta} + a \left(a \frac{\partial}{\partial \zeta} + a \frac{\partial}{\partial \eta} \right) \frac{\partial}{\partial \eta} = a^{2} \left(\frac{\partial^{2}}{\partial \zeta^{2}} - 2 \frac{\partial^{2}}{\partial \zeta \partial \eta} + \frac{\partial^{2}}{\partial \eta^{2}} \right)$$

$$\frac{\partial^{2}}{\partial x^{2}} = \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} \right) = \frac{\partial}{\partial \zeta} \left(\frac{\partial}{\partial x} \right) \frac{\partial \zeta}{\partial x} + \frac{\partial}{\partial \eta} \left(\frac{\partial}{\partial x} \right) \frac{\partial \eta}{\partial x} = \left(\frac{\partial}{\partial \zeta} + \frac{\partial}{\partial \eta} \right) \frac{\partial}{\partial \zeta} + \left(\frac{\partial}{\partial \zeta} + \frac{\partial}{\partial \eta} \right) \frac{\partial}{\partial \eta} = \frac{\partial^{2}}{\partial \zeta^{2}} + 2 \frac{\partial^{2}}{\partial \zeta \partial \eta} + \frac{\partial^{2}}{\partial \eta^{2}}$$

Method of Characteristics

- 1D, unsteady isentropic flow
 - Equations can be expressed by other variables $(\eta = x + at, \zeta = x at)$

$$\frac{\partial^2}{\partial \zeta \partial \eta} \left(\frac{u}{a} \right) = 0 \qquad \frac{\partial^2}{\partial \zeta \partial \eta} \left(\frac{\rho'}{\rho} \right) = 0$$

Solution

$$\frac{u}{a} = \int \frac{dF(\zeta)}{d\zeta} d\zeta + G(\eta) = F(\zeta) + G(\eta) = F(x - at) + G(x + at)$$

$$\frac{\rho'}{\rho} = \int \frac{df(\zeta)}{d\zeta} d\zeta + g(\eta) = f(\zeta) + g(\eta) = f(x - at) + g(x + at)$$

Substitute to acoustic equations

$$-af' + ag' + a(F' + G') = 0 -aF' + aG' + a(f + g') = 0$$
$$\Rightarrow G(\eta) = g(\eta), F(\zeta) = f(\zeta)$$

• Final form

$$\frac{u}{a} = f(x - at) - g(x + at) \qquad \frac{\rho'}{\rho} = f(x - at) + g(x + at)$$

- u/a, ρ'/ρ are right or left facing waves propagated at constant velocity (dx/dt = a).
- Because this equations have linearity, wave form does not changed.

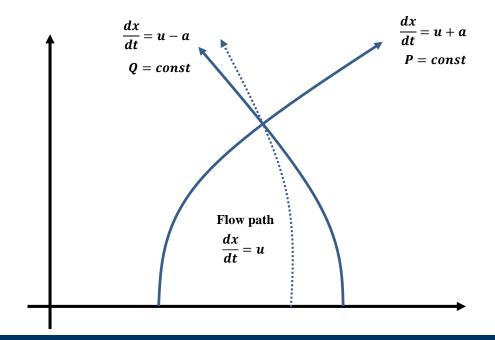
Method of Characteristics

- 1D, unsteady isentropic flow
 - Finite wave (non-linear differential equations).

$$\frac{\partial P}{\partial t} + (u+a)\frac{\partial P}{\partial x} = 0 \qquad \frac{\partial Q}{\partial t} + (u-a)\frac{\partial Q}{\partial x} = 0$$

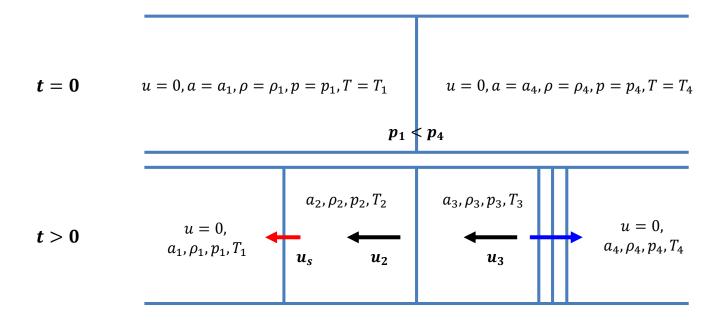
• Where P, Q are Riemann invariants which mean constant value along the characteristics line.

$$P = u + \frac{2}{\gamma - 1}a$$
, $Q = u - \frac{2}{\gamma - 1}a$



Appendix C

Shock tube problem (Riemann problem)



- Across the contact wave, there are different fluids.
 - After diaphragm raptured, fluids does not penetrated each other (not mixed)
 - In other to contact wave is maintained, pressure and normal velocity have to same across the contact wave.

$$p_2=p_3, \qquad u_2=u_3$$

Appendix C

- HLL approximate Riemann solvers
 - Across the contact wave, there are different fluids.
 - After diaphragm raptured, fluids does not penetrated each other (not mixed)
 - In other to contact wave is maintained, pressure and normal velocity have to same across the contact wave.