



# Distilling Knowledge via Knowledge Review

Pengguang Chen<sup>1</sup> Shu Liu<sup>2</sup> Hengshuang Zhao<sup>3</sup> Jiaya Jia<sup>1,2</sup> The Chinese University of Hong Kong<sup>1</sup> SmartMore<sup>2</sup> University of Oxford<sup>3</sup> {pgchen, leojia}@cse.cuhk.edu.hk liushuhust@gmail.com hengshuang.zhao@eng.ox.ac.uk

**Presenter: Seonghak KIM** 



### Introduction



### Knowledge Distillation

- Training small networks under the supervision of a larger networks
- Type
  - Logit-based distillation
  - Feature-based distillation with intermediate layers
- (-) only use the same level information to guide the student



[Previous knowledge distillation frameworks. They only transfer knowledge within the same levels]



### Introduction



### Knowledge Review

- Review mechanism
  - Multi-level information of the teacher to guide one-level learning of the student
- Residual learning
- Attention based fusion (ABF)
- Hierarchical context loss (HCL)



[Knowledge review mechanism. Multiple layers of the teacher is used to supervise one layer in the student]





#### Review mechanism

#### Notation

- Given input image **X** and student network S, the output logit of the student is  $Y_s = S(X)$ .
- When  $S \to (S_1, S_2, ..., S_n, S_c)$ ,  $\mathbf{Y_s} = S_c \circ S_n \circ \cdots \circ S_1(\mathbf{X})$  [cf.,  $g \circ f(x) = g(f(x))$ ]
- Intermediate features are  $(F_s^1, \dots, F_s^i, \dots, F_s^n)$  where  $F_s^i = S_i \circ \dots \circ S_1(X)$



[Single-layer knowledge distillation with the review mechanism]

[Multiple-layers knowledge distillation with the review mechanism]





#### Review mechanism

- Single-layer Knowledge distillation
  - $\mathcal{L}_{SKD} = \mathcal{D}\left(\mathcal{M}_{S}^{i}(\mathbf{F}_{S}^{i}), \mathcal{M}_{t}^{i}(\mathbf{F}_{t}^{i})\right) \rightarrow \mathcal{L}_{SKD_{R}} = \sum_{j=1}^{i} \mathcal{D}\left(\mathcal{M}_{S}^{i,j}(\mathbf{F}_{S}^{i}), \mathcal{M}_{t}^{j,i}(\mathbf{F}_{t}^{j})\right)$ 
    - ullet M is transformation, which is simply composed of convolution and nearest interpolation layers for matching the size.
    - D is distance function.



[Single-layer knowledge distillation with the review mechanism]



[Multiple-layers knowledge distillation with the review mechanism]





#### Review mechanism

$$\mathcal{L} = \mathcal{L}_{CE} + \lambda \mathcal{L}_{MKD\_R}$$

- Multiple-layers Knowledge distillation
  - $\mathcal{L}_{\text{MKD}} = \sum_{i \in \mathbf{I}} \mathcal{D}\left(\mathcal{M}_{s}^{i}(\mathbf{F}_{s}^{i}), \mathcal{M}_{t}^{i}(\mathbf{F}_{t}^{i})\right) \rightarrow \mathcal{L}_{\text{MKD\_R}} = \sum_{i \in \mathbf{I}} \left(\sum_{j=1}^{i} \mathcal{D}\left(\mathcal{M}_{s}^{i,j}(\mathbf{F}_{s}^{i}), \mathcal{M}_{t}^{j,i}(\mathbf{F}_{t}^{j})\right)\right)$
  - (-) cumbersome learning process [e.g., network with n stages  $\rightarrow$  calculations of  $\frac{1}{2}$ n(n + 1)]

#### Shallower features of the teacher are used only.



[Single-layer knowledge distillation with the review mechanism]



[Multiple-layers knowledge distillation with the review mechanism]





### Residual Learning

- Fusion module  $(\mathcal{U})$ 
  - $\mathcal{L}_{\text{MKD}_{-R}} = \sum_{i \in I} \left( \sum_{j=1}^{i} \mathcal{D} \left( \mathcal{M}_{s}^{i,j}(\mathbf{\textit{F}}_{s}^{i}), \mathcal{M}_{t}^{j,i}(\mathbf{\textit{F}}_{t}^{j}) \right) \right) \Rightarrow \mathcal{L}_{\text{MKD}_{-R}} = \sum_{j=1}^{n} \sum_{i=j}^{n} \mathcal{D} \left( \mathbf{\textit{F}}_{s}^{i}, \mathbf{\textit{F}}_{t}^{j} \right)$
  - $\sum_{i=j}^{n} \mathcal{D}\left(\mathbf{F}_{s}^{i}, \mathbf{F}_{t}^{j}\right) \approx \mathcal{D}\left(\mathcal{U}\left(\mathbf{F}_{s}^{j}, ..., \mathbf{F}_{s}^{n}\right), \mathbf{F}_{t}^{j}\right)$



[Optimized architecture with fusion modules]





cf. Residual learning

 $F_4^{\mathcal{S}} + F_3^{\mathcal{S}} \to F_3^{\mathcal{T}} \Longrightarrow F_4^{\mathcal{S}} \to F_3^{\mathcal{S}} - F_3^{\mathcal{T}}$ 

### Residual Learning

- Recursive operation
  - $\mathcal{U}\left(\mathbf{F}_{S}^{j}, \mathbf{F}_{S}^{j+1}, ..., \mathbf{F}_{S}^{n}\right) \rightarrow \text{combination of } \mathbf{F}_{S}^{j} \text{ and } \mathcal{U}\left(\mathbf{F}_{S}^{j+1}, ..., \mathbf{F}_{S}^{n}\right)$
  - $\mathcal{L}_{\text{MKD\_R}} = \mathcal{D}(\mathbf{\textit{F}}_{\textit{S}}^{\text{n}}, \mathbf{\textit{F}}_{\textit{t}}^{\text{n}}) + \sum_{j=n-1}^{1} \mathcal{D}\left(\mathcal{U}\left(\mathbf{\textit{F}}_{\textit{S}}^{j}, \mathbf{\textit{F}}_{\textit{S}}^{j+1, n}\right), \mathbf{\textit{F}}_{\textit{t}}^{j}\right)$

Teacher

- $F_s^{j+1,n}$  denotes a fusion of features from  $F_s^{j+1}$  to  $F_s^n$

[Final architecture]





- ABF and HCL
  - ABF (attention based fusion)
  - HCL (hierarchical context loss)



Pyramid Pooling  $\mathcal{L}_2$  $\mathcal{L}_2$ Pyramid Pooling HCL

[Architecture of HCL]





### Classification

• Results on CIFAR 100 (same architectures)

| Distillation    | Teacher<br>Acc | ResNet56<br>72.34 | ResNet110<br>74.31 | ResNet32x4<br>79.42 | WRN40-2<br>75.61 | WRN40-2<br>75.61 | VGG13<br>74.64 |
|-----------------|----------------|-------------------|--------------------|---------------------|------------------|------------------|----------------|
| Mechanism       | Student<br>Acc | ResNet20<br>69.06 | ResNet32<br>71.14  | ResNet8x4<br>72.50  | WRN16-2<br>73.26 | WRN40-1<br>71.98 | VGG8<br>70.36  |
| Logits          | KD [9]         | 70.66             | 73.08              | 73.33               | 74.92            | 73.54            | 72.98          |
| Single Layer    | FitNet [25]    | 69.21             | 71.06              | 73.50               | 73.58            | 72.24            | 71.02          |
| Single Layer    | PKT [23]       | 70.34             | 72.61              | 73.64               | 74.54            | 73.54            | 72.88          |
| Single Layer    | RKD [22]       | 69.61             | 71.82              | 71.90               | 73.35            | 72.22            | 71.48          |
| Single Layer    | CRD [28]       | 71.16             | 73.48              | 75.51               | 75.48            | 74.14            | 73.94          |
| Multiple Layers | AT [38]        | 70.55             | 72.31              | 73.44               | 74.08            | 72.77            | 71.43          |
| Multiple Layers | VID [1]        | 70.38             | 72.61              | 73.09               | 74.11            | 73.30            | 71.23          |
| Multiple Layers | OFD [8]        | 70.98             | 73.23              | 74.95               | 75.24            | 74.33            | 73.95          |
| Review          | Ours           | 71.89             | 73.89              | 75.63               | 76.12            | 75.09            | 74.84          |

[Results on CIFAR-100 with the teacher and student having same architectures.]





### Classification

• Results on CIFAR 100 (different architectures)

| Distillation    | Teacher<br>Acc | ResNet32x4<br>79.42   | WRN40-2<br>75.61      | VGG13<br>74.64      | ResNet50<br>79.34   | ResNet32x4<br>79.42   |
|-----------------|----------------|-----------------------|-----------------------|---------------------|---------------------|-----------------------|
| Mechanism       | Student<br>Acc | ShuffleNetV1<br>70.50 | ShuffleNetV1<br>70.50 | MobileNetV2<br>64.6 | MobileNetV2<br>64.6 | ShuffleNetV2<br>71.82 |
| Logits          | KD [9]         | 74.07                 | 74.83                 | 67.37               | 67.35               | 74.45                 |
| Single Layer    | FitNet [25]    | 73.59                 | 73.73                 | 64.14               | 63.16               | 73.54                 |
| Single Layer    | PKT [23]       | 74.10                 | 73.89                 | 67.13               | 66.52               | 74.69                 |
| Single Layer    | RKD [22]       | 72.28                 | 72.21                 | 64.52               | 64.43               | 73.21                 |
| Single Layer    | CRD [28]       | 75.11                 | 76.05                 | 69.73               | 69.11               | 75.65                 |
| Multiple Layers | AT [38]        | 71.73                 | 73.32                 | 59.40               | 58.58               | 72.73                 |
| Multiple Layers | VID [1]        | 73.38                 | 73.61                 | 65.56               | 67.57               | 73.40                 |
| Multiple Layers | OFD [8]        | 75.98                 | 75.85                 | 69.48               | 69.04               | 76.82                 |
| Review          | Ours           | 77.45                 | 77.14                 | 70.37               | 69.89               | 77.78                 |

[Results on CIFAR-100 with the teacher and student having different architectures.]





### Classification

- Results on ImageNet
  - (a) different architectures (student: MobileNet, teacher: ResNet50)
  - (b) same architectures (student: ResNet18, teacher: ResNet34)

| Setting |       | Teacher | Student | KD [9] | AT [38] | OFD [8] | CRD [28] | Ours  |
|---------|-------|---------|---------|--------|---------|---------|----------|-------|
| (a)     | Top-1 | 76.16   | 68.87   | 68.58  | 69.56   | 71.25   | 71.37    | 72.56 |
|         | Top-5 | 92.86   | 88.76   | 88.98  | 89.33   | 90.34   | 90.41    | 91.00 |
| (b)     | Top-1 | 73.31   | 69.75   | 70.66  | 70.69   | 70.81   | 71.17    | 71.61 |
|         | Top-5 | 91.42   | 89.07   | 89.88  | 90.01   | 89.98   | 90.13    | 90.51 |

[Results on ImageNet]





## Object Detection

### • Results on COCO2017

|         | Method                   | mAP           | AP50  | AP75  | APl          | APm   | APs   |
|---------|--------------------------|---------------|-------|-------|--------------|-------|-------|
| Teacher | Faster R-CNN w/ R101-FPN | 42.04         | 62.48 | 45.88 | 54.60        | 45.55 | 25.22 |
| Student | Faster R-CNN w/ R18-FPN  | 33.26         | 53.61 | 35.26 | 43.16        | 35.68 | 18.96 |
|         | w/ KD [9]                | 33.97 (+0.61) | 54.66 | 36.62 | 44.14        | 36.67 | 18.71 |
|         | w/ FitNet [25]           | 34.13 (+0.87) | 54.16 | 36.71 | 44.69        | 36.50 | 18.88 |
|         | w/ FGFI [31]             | 35.44 (+2.18) | 55.51 | 38.17 | 47.34        | 38.29 | 19.04 |
|         | w/ Our Method            | 36.75 (+3.49) | 56.72 | 34.00 | 49.58        | 39.51 | 19.42 |
| Teacher | Faster R-CNN w/ R101-FPN | 42.04         | 62.48 | 45.88 | 54.60        | 45.55 | 25.22 |
| Student | Faster R-CNN w/ R50-FPN  | 37.93         | 58.84 | 41.05 | 49.10        | 41.14 | 22.44 |
|         | w/ KD [9]                | 38.35 (+0.42) | 59.41 | 41.71 | 49.48        | 41.80 | 22.73 |
|         | w/ FitNet [25]           | 38.76 (+0.83) | 59.62 | 41.80 | 50.70        | 42.20 | 22.32 |
|         | w/ FGFI [31]             | 39.44 (+1.51) | 60.27 | 43.04 | 51.97        | 42.51 | 22.89 |
|         | w/ Our Method            | 40.36 (+2.43) | 60.97 | 44.08 | <b>52.87</b> | 43.81 | 23.60 |
| Teacher | Faster R-CNN w/ R50-FPN  | 40.22         | 61.02 | 43.81 | 51.98        | 43.53 | 24.16 |
| Student | Faster R-CNN w/ MV2-FPN  | 29.47         | 48.87 | 30.90 | 38.86        | 30.77 | 16.33 |
|         | w/ KD [9]                | 30.13 (+0.66) | 50.28 | 31.35 | 39.56        | 31.91 | 16.69 |
|         | w/ FitNet [25]           | 30.20 (+0.73) | 49.80 | 31.69 | 39.69        | 31.64 | 16.39 |
|         | w/ FGFI [31]             | 31.16 (+1.69) | 50.68 | 32.92 | 42.12        | 32.63 | 16.73 |
|         | w/ Our Method            | 33.71 (+4.24) | 53.15 | 36.13 | 46.47        | 35.81 | 16.77 |
| Teacher | RetinaNet101             | 40.40         | 60.25 | 43.19 | 52.18        | 44.34 | 24.03 |
| Student | RetinaNet50              | 36.15         | 56.03 | 38.73 | 46.95        | 40.25 | 21.37 |
|         | w/ KD [9]                | 36.76 (+0.61) | 56.60 | 39.40 | 48.17        | 40.56 | 21.87 |
|         | w/ FitNet [25]           | 36.30 (+0.15) | 55.95 | 38.95 | 47.14        | 40.32 | 20.10 |
|         | w/ FGFI [31]             | 37.29 (+1.14) | 57.13 | 40.04 | 49.71        | 41.47 | 21.01 |
|         | w/ Our Method            | 38.48 (+2.33) | 58.22 | 41.46 | 51.15        | 42.72 | 22.67 |

[Results on object detection]





### Analysis

### Ablation study

Student: Wide Residual Network (WRN16-2)

• Teacher: WRN40-2

CIFAR100 dataset

| RM       | RLF      | ABF      | HCL      | Accuracy               |
|----------|----------|----------|----------|------------------------|
|          |          |          |          | $74.3 \pm 5e-2$        |
| <b>~</b> |          |          |          | $75.2 \pm 6e-2$        |
| ~        | <b>✓</b> |          |          | $75.6 \pm 6e-2$        |
| ~        | <b>✓</b> | <b>✓</b> |          | $76.0 \pm 6\text{e-}2$ |
| ~        | <b>✓</b> |          | <b>✓</b> | $75.8 \pm 5e-2$        |
| ~        | ~        | ~        | <b>~</b> | $76.2 \pm 4\text{e-}2$ |

[RM: Review mechanism.

RLF: Residual learning framework. ABF: Attention based fusion module. HCL: Hierarchical context loss function.]



### **Conclusion**



#### Contributions

- The *review mechanism*, which uses multiple layers in the teacher was proposed to supervise one layer in the student.
- Significant improvement on all classification, detection, and segmentation





# Thank you.