
Seonghak KIM

Integral Neural Networks
(CVPR 23 Award Candidate)

Presenter: Seonghak KIM



Seonghak KIM

Introduction

⚫ DNN (Deep Neural Networks)

⚫ Characteristic

⚫ Approximating continuous multivariate function † ¶
→ huge representation

⚫ Large number of parameters and computations for better performance

⚫ Limit applications (memory- and computation-constrained devices) → pruning, quantization, NAS

⚫ Discretized representations

⚫ Natural signals such as images or audio signals, which inevitably discretized.

⚫ Matrix multiplications and discrete convolutions

⚫ Modification of size of NN (→ performance degradation)

⚫ Although pruning can generate efficient models, it requires to fine-tune the on whole training datasets.

⚫ Many tasks (e.g., autonomous driving) require different response speeds on same hardware according to various 

conditions (e.g., driving speed and weather condition).

⚫ Multiple model for all possible scenarios and store them together → resources ↑

➔ self-resizing model without performance degradation 

2

† Kolmogorov superposition theorem

¶ universal approximation theorem



Seonghak KIM

Introduction

⚫ INN (Integral Neural Networks)

⚫ Continuous representation

⚫ Integral operators

⚫ High-dimensional hypercube to present the weights of one layer as a continuous surface

⚫ Numerical quadrature approximation (continuous networks → discretization)

⚫ At inference, arbitrary size with various discretization intervals (while preserving original performance)

3



Seonghak KIM

Methods

⚫ Preliminary

⚫ Full-connected and convolution layer → numerical integration

⚫ Let 𝑊 𝑥 , 𝑆 𝑥 be univariate functions

⚫ 𝑤𝑞 = 𝑞0𝑊 𝑥0 , … , 𝑞𝑛𝑊 𝑥𝑛

⚫ Ԧ𝑠 = 𝑆 𝑥0 , … , 𝑆(𝑥𝑛)

⚫ Ԧ𝑞 = 𝑞0, … , 𝑞𝑛 : weights of the integration quadrature

⚫ Ԧ𝑃𝑥 = 𝑥0, … , 𝑥𝑛 : segment partition 0 < 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑛−1 < 𝑥𝑛 < 1

⚫ Ԧ𝑃𝑥, Ԧ𝑞 : numerical integration method

➔ Integral of a product of two univariate functions ≈ dot product of two vectors (w/ specific integration 

method)

4

න
0

1

𝑊 𝑥 𝑆 𝑥 𝑑𝑥 ≈෍

𝑖=0

𝑛

𝑞𝑖𝑊 𝑥𝑖 𝑆 𝑥𝑖 = 𝑤𝑞 ⋅ Ԧ𝑠



Seonghak KIM

Methods

⚫ Convolution layer

⚫ Multichannel signal →Multichannel signal (i.e., ℝ𝒅×𝑪𝒊𝒏 → ℝ𝒅×𝑪𝒐𝒖𝒕)

⚫ 𝐹𝑊 𝜆, 𝑥𝑜𝑢𝑡 , 𝑥𝑖𝑛, 𝐱𝑠 : weight of layer represented by integrable function

⚫ 𝐱𝑠: scalar or vector representing the dimensions

⚫ 𝜆: vector of trainable parameters

⚫ 𝐹𝐼 𝑥
𝑖𝑛, 𝐱𝑠 : input images

⚫ 𝐹𝑂 𝑥𝑜𝑢𝑡 , 𝐱𝑠
′

: output images

⚫ Fully-connected layer

⚫ Vector → vector (i.e., ℝ𝒅 → ℝ𝒅)

⚫ Activation function

𝐹𝑂 𝑥𝑜𝑢𝑡 , 𝐱𝑠
′
= න

Ω

𝐹𝑊 𝜆, 𝑥𝑜𝑢𝑡 , 𝑥𝑖𝑛, 𝐱𝑠 𝐹𝐼 𝑥
𝑖𝑛, 𝐱𝑠 + 𝐱𝑠

′
𝑑𝑥𝑖𝑛𝑑𝐱𝑠

𝐹𝑂 𝑥𝑜𝑢𝑡 = න
0

1

𝐹𝑊 𝜆, 𝑥𝑜𝑢𝑡, 𝑥𝑖𝑛 𝐹𝐼 𝑥
𝑖𝑛 𝑑𝑥𝑖𝑛

𝒟 ActFunc 𝑥 , 𝑃𝑥 = ActFunc 𝒟 𝑥, 𝑃𝑥

න
0

1

𝑊 𝑥 𝑆 𝑥 𝑑𝑥 ≈ 𝑤𝑞 ⋅ Ԧ𝑠



Seonghak KIM

Methods

⚫ Evaluation and Backpropagation

⚫ Evaluation (Forward pass)

⚫ Integral kernel 𝐹 𝜆, 𝑥 → discretization → conventional layer for numerical integration

⚫ ∵ weights of a quadrature can be fused into the weight matrix of the vanilla layer

⚫ E.g., fully-connected layer, 𝐹𝑊 𝜆, 𝑥𝑜𝑢𝑡 , 𝑥𝑖𝑛 and 𝐹𝐼 𝜆, 𝑥
𝑖𝑛 : continuous function

➔ Composite quadrature can be represented as a forward pass of the corresponding discrete operator.

⚫ Backpropagation

➔ Evaluation of the integral operator with the kernel 
𝜕𝐹 𝜆,𝑥

𝜕𝜆
using the same quadrature as in the forward pass.

න
0

1

𝐹𝑊 𝜆, 𝑥𝑜𝑢𝑡, 𝑥𝑖𝑛 𝐹𝐼 𝑥
𝑖𝑛 𝑑𝑥𝑖𝑛 ≈

¶
෍

𝑖=0

𝑛

𝑞𝑖𝐹𝑊 𝜆, 𝑥𝑜𝑢𝑡 , 𝑥𝑖
𝑖𝑛 𝐹𝐼 𝑥𝑖

𝑖𝑛

𝑊𝑗𝑖

¶ Fubini theorem

† Leibniz theorem

𝜕

𝜕𝜆
න
0

1

𝐹𝑊 𝜆, 𝑥𝑜𝑢𝑡, 𝑥𝑖𝑛 𝐹𝐼 𝑥
𝑖𝑛 𝑑𝑥𝑖𝑛 & ≈

†
න
0

1𝜕𝐹𝑊 𝜆, 𝑥𝑜𝑢𝑡 , 𝑥𝑖𝑛

𝜕𝜆
𝐹𝐼 𝑥

𝑖𝑛 𝑑𝑥𝑖𝑛

= ෍

𝑖=0

𝑛

𝑞𝑖
𝐹𝑊 𝜆, 𝑥𝑜𝑢𝑡, 𝑥𝑖

𝑖𝑛

𝜕𝜆
𝐹𝐼 𝑥𝑖

𝑖𝑛



Seonghak KIM

Methods

⚫ Evaluation and Backpropagation

⚫ Evaluation (Forward pass)

න
0

1

𝐹𝑊 𝜆, 𝑥𝑜𝑢𝑡, 𝑥𝑖𝑛 𝐹𝐼 𝑥
𝑖𝑛 𝑑𝑥𝑖𝑛 ≈

¶
෍

𝑖=0

𝑛

𝑞𝑖𝐹𝑊 𝜆, 𝑥𝑜𝑢𝑡 , 𝑥𝑖
𝑖𝑛 𝐹𝐼 𝑥𝑖

𝑖𝑛

𝑊𝑗𝑖

¶ Fubini theorem

† Leibniz theorem



Seonghak KIM

Methods

⚫ Continuous parameters representation 𝑭 𝝀, 𝒙

⚫ Linear combination

⚫ Richer and more generalized continuous parameter representation → sample discrete weights

⚫ Interpolation kernels with uniformly distributed interpolation nodes on the line segment [0,1]

⚫ 𝑚: number of interpolation nodes

⚫ 𝜆𝑖: node’s value

𝐹𝑊 𝜆, 𝑥 =෍

𝑖=0

𝑚

𝜆𝑖𝑢 𝑥𝑚 − 𝑖

cf.෍
𝑖=0

𝑛

𝑞𝑖𝐹𝑊 𝜆, 𝑥𝑜𝑢𝑡 , 𝑥𝑖
𝑖𝑛 𝐹𝐼 𝑥𝑖

𝑖𝑛

𝑊𝑗𝑖



Seonghak KIM

Methods

⚫ Continuous parameters representation 𝑭 𝝀, 𝒙

⚫ Fully-connected layer

⚫ Two dimensional weight tensor represented by linear combination of two-dimensional kernels on a uniform 

2D grid within the square 0,1 2

⚫ Sampling continuous representations on partitions Ԧ𝑃𝑜𝑢𝑡 , Ԧ𝑃𝑖𝑛 → 𝑊𝑞

⚫ 𝑃𝑜𝑢𝑡 = 𝑘ℎ𝑜𝑢𝑡 𝑘, 𝑃
𝑖𝑛 = 𝑙ℎ𝑖𝑛

𝑙
: uniform partitions with steps ℎ𝑜𝑢𝑡 , ℎ𝑖𝑛

➔ Various partition size make diverse sized model

⚫ Trainable partition

⚫ Non-uniform sampling → improve numerical integration w/o partition size ↑

⚫ Training the separable partitions 

⚫ Ԧ𝛿norm =
𝛿2

sum 𝛿2
, Ԧ𝛿 = 0, 𝛿1, … , 𝛿𝑛

𝐹𝑊 𝜆, 𝑥𝑜𝑢𝑡, 𝑥𝑖𝑛 =෍

𝑖,𝑗

𝜆𝑖𝑗𝑢 𝑥𝑜𝑢𝑡𝑚𝑜𝑢𝑡 − 𝑖 𝑢 𝑥𝑖𝑛𝑚𝑖𝑛 − 𝑗

𝑊𝑞 𝑘, 𝑙 = 𝑞𝑙𝑊 𝑘, 𝑙 = 𝑞𝑙𝐹𝑊 𝜆, 𝑃𝑘
𝑜𝑢𝑡, 𝑃𝑘

𝑖𝑛

Ԧ𝑃 = cumsum Ԧ𝛿norm



Seonghak KIM

Methods

⚫ Training INN

⚫ Conversion of DNNs to INNs

⚫ Benefits of use from pre-trained discrete networks by converting into integral networks

⚫ Better initialization for training of integral networks

⚫ Permutation by total variation minimization along a specific dimension of the weight tensor

⚫ cf. optimal “route” in TSP as optimal permutation→ slices along the 𝑐𝑜𝑢𝑡 = “cities”, total variation = “distance” b/w cites

• 𝜎: permutation, 𝜎 𝑖 : new position of 𝑖 element by the permutation

• 𝑆𝑛: set of all permutations of length 𝑛

2opt: min
𝜎∈𝑆𝑛

෍ 𝑊 𝜎 𝑖 −𝑊 𝜎 𝑖 + 1

[TSP]



Seonghak KIM

Methods

⚫ Training INN

⚫ Optimization of continuous weights

⚫ Training algorithm minimizes the differences b/w different cube partitions for each layer

⚫ Net 𝑋, 𝑃𝑖 : neural network evaluated on input data X with labels Y

⚫ 𝑃1, 𝑃2: two different partitions for each layer

⚫ Reduction of differences between the outputs of INNs of different sizes 

➔ trained INNs has a similar performance when pruned to arbitrary sizes.

Net 𝑋, 𝑃1 − Net 𝑋, 𝑃2 ≤ Net 𝑋, 𝑃1 − 𝑌 + Net 𝑋, 𝑃2 − 𝑌



Seonghak KIM

Experiments

⚫ Comparison with discrete NNs

➔ Performance: INN from pre-trained discrete net ≥ discrete net ≫ INN from scratch

➔ Even after 40% pruning the INN preserves almost the same performance.



Seonghak KIM

Experiments

⚫ Structured pruning w/o fine-tuning through conversion to INN

➔ INNs significantly outperform other alternative equipped with the ability of pruning w/o fine-turning.

➔ w/o permutation, higher accuracy drop when partition tuning is applied.



Seonghak KIM

Experiments

⚫ Trainable partition

➔Additional flexibility to enrich the signal reconstruction leads to higher quality representation



Seonghak KIM

Conclusions

⚫ Conclusions

⚫ Integral representation of neural networks

⚫ It generate conventional neural networks of arbitrary shape by a re-discretization of the integral kernel.

⚫ Same performance as their discrete DNN counterparts, while being stable under pruning w/o the fine-

tuning.

⚫ Open problems

⚫ Nyquist theorem

⚫ How to select the number of sampling points

⚫ Adaptive integral quadrature

⚫ Non-uniform partition estimation

⚫ Training from scratch

⚫ Absence of batch-normalization layers



Seonghak KIM

Thank you.

16


