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BREIL Introduction KAIST

+ Kolmogorov superposition theorem

. D N N (Dee p N eu ral N etWO r kS) 1 universal approximation theorem

® Characteristic
Approximating continuous multivariate function ¥ 1 - huge representation
Large number of parameters and computations for better performance
Limit applications (memory- and computation-constrained devices) - pruning, quantization, NAS

® Discretized representations
Natural signals such as images or audio signals, which inevitably discretized.
Matrix multiplications and discrete convolutions

Modification of size of NN (= performance degradation)
@ Although pruning can generate efficient models, it requires to fine-tune the on whole training datasets.

® Many tasks (e.g., autonomous driving) require different response speeds on same hardware according to various
conditions (e.g., driving speed and weather condition).

® Multiple model for all possible scenarios and store them together - resources T

= self-resizing model without performance degradation
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BREIL Introduction KAIST

® [NN (Integral Neural Networks)

® Continuous representation

Integral operators
High-dimensional hypercube to present the weights of one layer as a continuous surface

Numerical quadrature approximation (continuous networks —> discretization)
At inference, arbitrary size with various discretization intervals (while preserving original performance)
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Figure 2. Different integration quadratures: a) left Riemann quadrature, b) right Riemann quadrature, c¢) trapezoidal quadrature. Riemann
qudratures are first-order methods, while the trapezoidal quadrature is a second-order method. The trapezoidal quadrature computes the
integral more precisely than the Riemann quadratures with a fewer required number of points in the segment partition.
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® Preliminary

® Full-connected and convolution layer = numerical integration
Let W(x), S(x) be univariate functions

1 n
| weasedx = Y WS =, -§
0 i=0

q = (qOW(XO)J AL qnW(xn))
= (S(xg), ..., S(xn))

w

S

q = (qo, ---,qy): Weights of the integration quadrature

P* = (xy, ..., x,): Segment partition (0 < xp < x; < -+ < Xp_q < X, < 1)
(P*,d): numerical integration method

=» Integral of a product of two univariate functions = dot product of two vectors (w/ specific integration
method)
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® Convolution layer

® Multichannel signal & Multichannel signal (i.e., R4*¢in — R%*Cout)

Fy (2, x%%, x™, x5): weight of layer represented by integrable function
® x°: scalar or vector representing the dimensions
® J: vector of trainable parameters

F;(x™,x5): input images

1
j W(x)S(x)dx =~ W - S
0

Fo(x°%t,x"): output images
Fo(x0%, xS') = f Fy (4, x°U8, x ™, x5) F (2™, x5 + xsl)dxi"dxs
Q

® [ully-connected layer
® \ector = vector (i.e., R* - R%)

1
Fo(xout) — J FW(/onut,xin)FI(xin)dxin
0

® Activation function

D(ActFunc(x), P,) = ActFunc(D(x, Px))
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1 Fubini theorem

® Evaluation and Backpropagation  Leibniz theorem

® Evaluation (Forward pass)
Integral kernel F(4, x) - discretization - conventional layer for numerical integration
() weights of a quadrature can be fused into the weight matrix of the vanilla layer

E.g., fully-connected layer, Fy, (2, x°%¢, x'™) and F; (4, x™): continuous function
n

1
j FW(A, xout, xin)FI(xin)dxin zﬂ z CIiFW(/L xout’ xim)FI(xlm)
0 i
=0 V|/}
= Composite quadrature can be represented as a forward pass of the corresponding discrete operator.

® Backpropagation

1

0 . . . + 1 aFW(/onut,
_ out mn n n ~
o1, FW(/Lx , X )Fl(x )dx & fo Fh

n .
F. /onut,x_ln )
= g A
=0

xin) F, (xin)dxin

0F(A,x)
oA

= Evaluation of the integral operator with the kernel using the same quadrature as in the forward pass.
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1 Fubini theorem

® Evaluation and Backpropagation  Leibniz theorem
® Evaluation (Forward pass)

n
1
out ,.in in in 1 out ,.in in
f FW(/Lx , X )F,(x )dx ~ E tiW(/l,x ) X; )F,(xi )
0 c
=0
W,
Smooth weights (" Discretized weights on the Integration quadrature A
xour representation oo given grid (partition)

weights matrix Q

— ‘ . (411 912 -]
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Discrete layer evaluation (ConvND, FC) )

Figure 3. Visualization of the integral layer evaluation. Continuous weights go through discretization along the variables =*™, z°** and

adjusted by an element-wise product with the integration quadrature (.
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® Continuous parameters representation F(4, x)

® Linear combination

Richer and more generalized continuous parameter representation - sample discrete weights
Interpolation kernels with uniformly distributed interpolation nodes on the line segment [0,1]

Fy(4,x) = z Au(xm — i)
i=0

® m: number of interpolation nodes
® J;: node’s value

Cubic convolutional Trainable interpolation Continuous representation Discretization W
kernel uix) nodes A; FwlA, x) on partition P
1.0 1.0 . . )
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Figure 4. Visualization of continuous parameter representation and sampling along one dimension. The continuous representation (c) is
the result of a linear combination of a cubic convolutional kernel (a) with interpolation nodes (b). During the forward phase it is discretized

(d) and combined with an integration quadrature. n . )
t ,in in
cf. z OtiW(/L X%, x; )F,(xi )
L=

VV]..
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® Continuous parameters representation F(4, x)

® Fully-connected layer

Two dimensional weight tensor represented by linear combination of two-dimensional kernels on a uniform
2D grid within the square [0,1]?

FW(A’xout’xin) — z Aiju(xoutmout _ i)u(xi"mi" _])
Lj

Sampling continuous representations on partitions pout pin Wy
Wylk, 1] = qWIk, 1] = q;Fy (2, PP*, P

® pout — (kpout}, pin = {tn'™} - uniform partitions with steps ho"¢, h'™

=> Various partition size make diverse sized model

® Trainable partition
Non-uniform sampling = improve numerical integration w/o partition size T
Training the separable partitions

-

P = cumsum(gnorm)

N 52 N
® anorm = —é); 6= (O, 51, '"1511)

sum(é‘2
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® Training INN

® Conversion of DNNs to INNSs

Benefits of use from pre-trained discrete networks by converting into integral networks
Better initialization for training of integral networks

Permutation by total variation minimization along a specific dimension of the weight tensor
® cf. optimal “route” in TSP as optimal permutation—> slices along the ¢°*t = “cities”, total variation = “distance” b/w cites

20pt: min ZIW[a(i)] —Wlo(i + 1]

* ¢: permutation, o (i): new position of i element by the permutation
» S, set of all permutations of length n

Matrix of the original Permuted discrete Smooth weights
¢t discrete weights ot weights X0 representation

= ] r "

PermytatiQn Smooth ‘
- orithm interpolation

B — —
. L d
cin cin xin

[TSP]

Figure 5. Toy example illustrating the permutation of filters in a discrete weight tensor in order to obtain a smoother structure.
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® Training INN

® Optimization of continuous weights
Training algorithm minimizes the differences b/w different cube partitions for each layer

INet(X, P;) — Net(X, P,)| < |Net(X,P;) — Y| + |Net(X, P,) — Y|

® Net(X, P;): neural network evaluated on input data X with labels Y
® P,, P,: two different partitions for each layer

Reduction of differences between the outputs of INNs of different sizes
=>» trained INNs has a similar performance when pruned to arbitrary sizes.
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® Comparison with discrete NNs

Dataset Model Discrete INN |INN-init Dataset Model Discrete INN [INN-init

NIN 923 o918l 925 SRCNN3x 329 326| 329 Tal?]e 1. C‘omparison of INNs.with discrete _networks on classifi-
Cifarl0 VGG-11 0L1 894 16 SetS EDSR 4x 4 3221 324 cation and image super-resolution tasks for different architectures.
thar } : : L. Discrete refers to the conventional DNN, INN refers to the integral
Resnet-18 953  93.1| 953 Setld SRCNN3x 294 29.0) 294 network trained from scratch, while INN-init refers to the integral
VGG-19 723 6851 724 EDSR 4x 287 282 ) 287 network trained according to pipeline A indicated in Fig. 6. Table
ImageNet ResNet-18 69.8  66.5| 70.0 B100 SRCNN 3x 268  26.1 26.8 (a) .ind‘icates accuracy [%] for classiﬁcatilon tasks, whereas table

ResNet-50 741 7121 741 EDSR 4x 276 272 27.6 (b) indicates PSNR [dB] for super-resolution tasks.

(a) (b)

=» Performance: INN from pre-trained discrete net > discrete net > INN from scratch

- -
INN 4x EDSR,
Compression 40%

_
Discrete
INN 4x EDSR 4x EDSR

Figure 7. Example of 4x image super-resolution with 4 methods: bicubic interpolation, EDSR discrete neural network, EDSR integral
neural network of full-size and pruned by 40%.

=>» Even after 40% pruning the INN preserves almost the same performance.
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@® Structured pruning w/o fine-tuning through conversion to INN
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Figure 1. Visualization of different channels selection methods without fine-tuning compared with our proposed integral neural networks.
a) ResNet-18 on Cifar10. b) NIN architecture on Cifar10. c) ResNet-18 on ImageNet. d) 4x EDSR on Div2k validation set. By compression
we denote the percentage of deleted parameters.

=>» INNs significantly outperform other alternative equipped with the ability of pruning w/o fine-turning.

w Perm., % w/o Perm., %

ResNet-18 93.0 91.3
NIN 89.4 84.71
VGG-11 88.7 85.2

Table 2. Tuning integration partition of INN with and without per-
mutation step during conversion from pre-trained DNN. All mod-
els were compressed at 40 %.

=>» w/0 permutation, higher accuracy drop when partition tuning is applied.
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® Trainable partition

Separable Non-separable
Original photo Fixed partition trainable partition trainable partition

' PSNR: 26.5 ii PSNR: 27.8 i PSNR: 29.7 i

Figure 8. Image reconstruction with 3 methods (from left to right): original image, interpolation kernels with fixed partition, with separable
trainable partition and non-separable trainable partition.

=>» Additional flexibility to enrich the signal reconstruction leads to higher quality representation
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® Conclusions

® Integral representation of neural networks
It generate conventional neural networks of arbitrary shape by a re-discretization of the integral kernel.

Same performance as their discrete DNN counterparts, while being stable under pruning w/o the fine-
tuning.

® Open problems

® Nyquist theorem
How to select the number of sampling points

® Adaptive integral quadrature
Non-uniform partition estimation

® Training from scratch
Absence of batch-normalization layers

- 0000000000000
Seonghak KIM



BREIL KAIST

Thank you.
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