

Decoupled Knowledge Distillation (DKD)

Borui Zhao¹ Quan Cui² Renjie Song¹ Yiyu Qiu^{1,3} Jiajun Liang¹

¹MEGVII Technology ²Waseda University ³Tsinghua University

zhaoborui.gm@gmail.com, cui-quan@toki.waseda.jp,

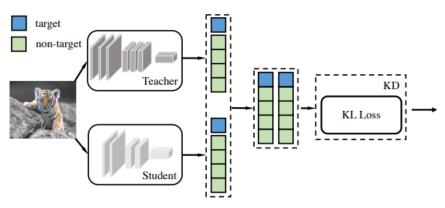
chouyy18@mails.tsinghua.edu.cn, {songrenjie, liangjiajun}@megvii.com

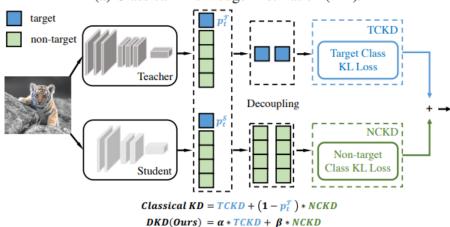
2023. 02. 08

Presenter: Seonghak KIM

Introduction

Knowledge Distillation


- Logits-based method
 - (+) computational and storage cost ↓
 - (–) unsatisfactory performance
- Feature-based method
 - (+) superior performance
 - (–) extra computational cost and storage usage
- \rightarrow Potential of logit distillation is limited.
- Decoupled Knowledge Distillation (DKD)
 - Target classification knowledge distillation (TCKD)
 - Binary logit distillation
 - Non-target classification knowledge distillation (NCKD)
 - Knowledge among non-target logits


Introduction

Decoupled Knowledge Distillation (DKD)

(a) Classical Knowledge Distillation (KD).

(b) Decoupled Knowledge Distillation (DKD).

[Illustration of the classical KD and DKD]

Reformulation

Notations

$$p_i = \frac{\exp(z_i)}{\sum_{j=1}^C \exp(z_j)}, \quad \boldsymbol{p} = [p_1, p_2, ..., p_t, ..., p_C] \in \mathbb{R}^{1 \times C}$$

Binary probabilities

$$p_t = \frac{\exp(z_t)}{\sum_{i=1}^C \exp(z_i)}, p_{\setminus t} = \frac{\sum_{k=1, k \neq t}^C \exp(z_k)}{\sum_{i=1}^C \exp(z_i)}, \qquad \boldsymbol{b} = \left[p_t, p_{\setminus t}\right] \in \mathbb{R}^{1 \times 2}$$

Probabilities among non-target classes

$$\hat{p}_i = \frac{\exp(z_i)}{\sum_{i=1, i \neq t}^{C} \exp(z_i)}, \qquad \hat{p} = [\hat{p}_1, \dots, \hat{p}_{t-1}, \hat{p}_{t+1}, \dots, \hat{p}_C] \in \mathbb{R}^{1 \times (C-1)}$$

Reformulation

Vanilla KD

$$\begin{split} \mathrm{KD} &= \mathrm{KL}(\mathbf{p}^{\mathcal{T}}||\mathbf{p}^{\mathcal{S}}) \\ &= p_t^{\mathcal{T}} \log(\frac{p_t^{\mathcal{T}}}{p_s^{\mathcal{S}}}) + \sum_{i=1, i \neq t}^{C} p_i^{\mathcal{T}} \log(\frac{p_i^{\mathcal{T}}}{p_s^{\mathcal{S}}}). \\ \mathrm{KD} &= p_t^{\mathcal{T}} \log(\frac{p_t^{\mathcal{T}}}{p_s^{\mathcal{S}}}) + p_{\backslash t}^{\mathcal{T}} \sum_{i=1, i \neq t}^{C} \hat{p}_i^{\mathcal{T}} (\log(\frac{\hat{p}_i^{\mathcal{T}}}{\hat{p}_i^{\mathcal{S}}}) + \log(\frac{p_{\backslash t}^{\mathcal{T}}}{p_{\backslash t}^{\mathcal{S}}})) \\ &= \underbrace{p_t^{\mathcal{T}} \log(\frac{p_t^{\mathcal{T}}}{p_t^{\mathcal{S}}}) + p_{\backslash t}^{\mathcal{T}} \log(\frac{p_{\backslash t}^{\mathcal{T}}}{p_{\backslash t}^{\mathcal{S}}}) + p_{\backslash t}^{\mathcal{T}} \sum_{i=1, i \neq t}^{C} \hat{p}_i^{\mathcal{T}} \log(\frac{\hat{p}_i^{\mathcal{T}}}{\hat{p}_i^{\mathcal{S}}})} \\ &= \underbrace{KL(\mathbf{b}^{\mathcal{T}}||\mathbf{b}^{\mathcal{S}})} \\ &= \mathrm{KL}(\mathbf{b}^{\mathcal{T}}||\mathbf{b}^{\mathcal{S}}) + (1 - p_t^{\mathcal{T}})\mathrm{KL}(\hat{\mathbf{p}}^{\mathcal{T}}||\hat{\mathbf{p}}^{\mathcal{S}}) \\ \\ &= \mathrm{KD} = \mathrm{TCKD} + (1 - p_t^{\mathcal{T}})\mathrm{NCKD}. \end{split}$$

 While NCKD focuses on the knowledge among non-target classes, TCKD focus on the knowledge related to the target class.

Effects of TCKD and NCKD

Δ	top-1	NCKD	TCKD	student					
ResNet32×4 as the teacher									
-	72.50								
1.13	73.63	\checkmark	\checkmark	ResNet8×4					
3.87	68.63		\checkmark						
1.76	74.26	√							
-	70.50								
3.79	74.29	\checkmark	\checkmark	ShuffleNet-V1					
-0.02	70.52		\checkmark	Snumenet-v1					
4.41	74.91	✓							
	er	s the teach	N-40-2 a	WR					
-	73.26								
1.70	74.96	\checkmark	\checkmark	WDN 16 2					
2.30	70.96		\checkmark	W KIN-10-2					
1.50	74.76	✓							
-	70.50								
4.42	74.92	\checkmark	\checkmark	ChufflaNet VI					
-0.12	70.62		\checkmark	Shuffletvet- V I					
4.62	75.12	√							
2 -1 -4	74.96 70.96 74.76 70.50 74.92 70.62	√ √ √	√ √ √	WRN-16-2 ShuffleNet-V1					

Table 1. Accuracy(%) on the CIFAR-100 validation set. Δ represents the performance improvement over the baseline.

- Singly applying TCKD is unhelpful or even harmful. (-)
- Performance of NCKD are comparable and even better than vanilla KD (−)
 - : target-class-related knowledge could not be as important as knowledge among non-target classes.

Effects of TCKD and NCKD

student	TCKD	top-1	Δ
ResNet8×4		73.82	-
KCSI CLO A 4	✓	75.33	+1.51
ShuffleNet-V1		77.13	-
Shumervet-v1	✓	77.98	+0.85

Table 2. Accuracy(%) on the CIFAR-100 validation. We set ResNet32×4 as the teacher and ResNet8×4 as the student. Both teachers and students are trained with AutoAugment [5].

noisy ratio	TCKD	top-1	Δ
0.1		70.99	-
0.1	\checkmark	70.96	-0.03
0.2		67.55	-
0.2	✓	68.03	+0.48
0.3		64.62	-
0.3	✓	65.26	+0.64

Table 3. Accuracy(%) on the CIFAR-100 validation with different noisy ratios on the training set. We set ResNet32×4 as the teacher and ResNet8×4 as the student.

TCKD	top-1	Δ
	70.71	-
✓	71.03	+0.32

Table 4. Accuracy(%) on the ImageNet validation. We set ResNet-34 as the teacher and ResNet-18 as the student.

: The more difficult the training data is, the more benefits TCKD could provide.

Decoupled Knowledge Distillation (DKD)

$$KD = TCKD + (1 - p_t^T)NCKD.$$

- NCKD loss is coupled with $(1 p_t^T)$.
- → More confident predictions results in smaller NCKD weights. (highly suppressed weights)
- Weights of NCKD and TCKD are coupled.

$$\therefore DKD = \alpha TCKD + \beta NCKD$$

where α and β are hyper-parameters.

Experiments

• Ablation: α and β

• Teacher: ResNet32×4, Student: ResNet8×4

	$1 - p_t^{\mathcal{T}}$					
top-1	73.63	74.79	75.44	75.94	76.32	76.18
	0.0					
top-1	75.30	75.64	76.12	76.32	76.11	75.42

• **CIFAR-100**

	teacher	ResNet56	ResNet110	ResNet32×4	WRN-40-2	WRN-40-2	VGG13
distillation manner	teacher	72.34	74.31	79.42	75.61	75.61	74.64
	student	ResNet20	ResNet32	ResNet8×4	WRN-16-2	WRN-40-1	VGG8
	student	69.06	71.14	72.50	73.26	71.98	70.36
	FitNet [28]	69.21	71.06	73.50	73.58	72.24	71.02
	RKD [23]	69.61	71.82	71.90	73.35	72.22	71.48
features	CRD [33]	71.16	73.48	75.51	75.48	74.14	73.94
	OFD [10]	70.98	73.23	74.95	75.24	74.33	73.95
	ReviewKD [1]	71.89	73.89	75.63	76.12	75.09	74.84
	KD [12]	70.66	73.08	73.33	74.92	73.54	72.98
logits	DKD	71.97	74.11	76.32	76.24	74.81	74.68
	Δ	+1.31	+1.03	+2.99	+1.32	+1.27	+1.70

Table 6. **Results on the CIFAR-100 validation.** Teachers and students are in the **same** architectures. And Δ represents the performance improvement over the classical KD. All results are the average over 5 trials.

Experiments

• **CIFAR-100**

distillation	teacher	ResNet32×4 79.42	WRN-40-2 75.61	VGG13 74.64	ResNet50 79.34	ResNet32×4 79.42
manner	student	ShuffleNet-V1	ShuffleNet-V1	MobileNet-V2	MobileNet-V2	ShuffleNet-V2
	student	70.50	70.50	64.60	64.60	71.82
	FitNet [28]	73.59	73.73	64.14	63.16	73.54
	RKD [23]	72.28	72.21	64.52	64.43	73.21
features	CRD [33]	75.11	76.05	69.73	69.11	75.65
	OFD [10]	75.98	75.85	69.48	69.04	76.82
	ReviewKD [1]	77.45	77.14	70.37	69.89	77.78
logits	KD [12]	74.07	74.83	67.37	67.35	74.45
	DKD	76.45	76.70	69.71	70.35	77.07
	Δ	+2.38	+1.87	+2.34	+3.00	+2.62

Table 7. **Results on the CIFAR-100 validation.** Teachers and students are in **different** architectures. And Δ represents the performance improvement over the classical KD. All results are the average over 5 trials.

ImageNet

distillation manner			features				logits		
	teacher	student	AT [43]	OFD [10]	CRD [33]	ReviewKD [1]	KD [12]	KD*	DKD
top-1	73.31	69.75	70.69	70.81	71.17	71.61	70.66	71.03	71.70
top-5	91.42	89.07	90.01	89.98	90.13	90.51	89.88	90.05	90.41

Table 8. **Top-1 and top-5 accuracy (%) on the ImageNet validation.** We set **ResNet-34** as the teacher and **ResNet-18** as the student. KD* represents the result of our implementation. All results are the average over 3 trials.

distillation manner			features						
	teacher	student	AT [43]	OFD [10]	CRD [33]	ReviewKD [1]	KD [12]	KD*	DKD
top-1	76.16	68.87	69.56	71.25	71.37	72.56	68.58	70.50	72.05
top-5	92.86	88.76	89.33	90.34	90.41	91.00	88.98	89.80	91.05

Table 9. **Top-1 and top-5 accuracy** (%) **on the ImageNet validation.** We set **ResNet-50** as the teacher and **MobileNet-V2** as the student. KD* represents the result of our implementation. All results are the average over 3 trials.

Conclusions

- Reformulation of vanilla KD loss into two parts
 - TCKD and NCKD
- Decoupled Knowledge Distillation
 - Coupled formulation limits the effectiveness of transfer
- Significant improvements on various datasets

Thank you.