
Korea Advanced Institute of Science and TechnologySeonghak KIM, hakk35@kaist.ac.kr

Stanford Univ., CS231n – Computer Vision

2022. 08. 18

Seonghak KIM

Electrical Engineering, EE

Korea Advanced Institute of Science and TechnologySeonghak KIM, hakk35@kaist.ac.kr

CS231n

⚫ Image Classification

⚫ Given image → discrete labels (classes)

⚫ Image is expressed by the numbers between [0 ,255] with 3 channels RGB

⚫ Challenges

⚫ Viewpoint variation: pixels change according to the camera location (not changed image)

⚫ Illumination

⚫ Deformation

⚫ Occlusion: the hided object

⚫ Background clutter: background has a similar color with the object.

⚫ Intraclass variation: the objects that has the same class (labels)

⚫ Non-Parametric Approach

⚫ After training a classifier from a dataset of images and labels, apply to the test images

⚫ Classifier: Nearest Neighbor

⚫ L1 distance: the absolute value of pixel gap between the test image and training image

→ 𝑑1 𝐼1, 𝐼2 = σ𝑝 𝐼1
𝑝
− 𝐼2

𝑝

2

56 32 10
90 23 128
24 26 178

[test image pixel]

10 20 24
8 10 89
12 16 178

[training image pixel]

46 12 14
82 13 39
12 10 0

[pixel-wise absolute value

differences]

෍𝑎𝑖𝑗 = 228

Korea Advanced Institute of Science and TechnologySeonghak KIM, hakk35@kaist.ac.kr

CS231n

⚫ Image Classification

⚫ Non-Parametric Approach

⚫ Classifier: K-Nearest Neighbors (KNN)

⚫ Majority vote from K closest points, not from nearest neighbor (i.e., Nearest Neighbors that is the case of K=1)

⚫ L1 distance

⚫ L2 distance → 𝑑2 𝐼1, 𝐼2 = σ𝑝 𝐼1
𝑝
− 𝐼2

𝑝 2

➔ where the best value of K and the best distance metric (i.e., L1 distance or L2 distance) are hyperparameters, thus it is

problem-dependent.

⚫ Weak point: Short training time, but long prediction time; it is desirable that fast at prediction and slow for training

∴ Convolution Neural Network (CNN)

3

Test Image

“Test Image is red”

[Nearest Neighbors (K=1)]

Test Image

“Test Image is blue”

[K-Nearest Neighbors (K=3)]

Korea Advanced Institute of Science and TechnologySeonghak KIM, hakk35@kaist.ac.kr

CS231n

⚫ Image Classification

⚫ Parametric Approach: Linear Classifier

⚫ The labels of given images is determined from the class scores that calculated by function of the pixels of

given image (single column vector) and parameters (or weights), i.e., 𝑓 𝑥,𝑊 = 𝑊𝑥 + 𝑏

⚫ The linear classifier divide the image

4

𝑎 𝑏
𝑐 𝑑

[given image pixel]

𝑥11 𝑥12 𝑥13 𝑥14
𝑥21 𝑥22 𝑥23 𝑥24
𝑥31 𝑥32 𝑥33 𝑥34

[weights]

𝑎
𝑏
𝑐
𝑑

[column vector of pixel] [bias]

𝛼
𝛽
𝛾

[scores]

𝑎𝑥11 + 𝑏𝑥12 + 𝑐𝑥13 + 𝑑𝑥14 + 𝛼
𝑎𝑥21 + 𝑏𝑥22 + 𝑐𝑥23 + 𝑑𝑥24 + 𝛽
𝑎𝑥31 + 𝑏𝑥32 + 𝑐𝑥33 + 𝑑𝑥34 + 𝛾

A weighted sum

[Linear classifier]

Red classifier

Green classifierBlue classifier

Korea Advanced Institute of Science and TechnologySeonghak KIM, hakk35@kaist.ac.kr

CS231n

⚫ Loss Function and Optimization

⚫ Loss Function: judge the performance of classifier

⚫ Given N dataset, 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑁 , where 𝑥𝑖 is image data and 𝑦𝑖 is integer label.

→ Loss,

⚫ Multiclass SVM Loss (Hinge Loss)

Here, 𝑠 = 𝑓 𝑥𝑖 , 𝑊 = 𝑊𝑥𝑖 is the scores vector.

⚫ (score of correct label, 𝑠𝑦𝑖) −1 < (score of wrong label, 𝑠𝑗) → 𝐿𝑖 > 0

⚫ (score of correct label, 𝑠𝑦𝑖) > (score of wrong label, 𝑠𝑗) +1→ 𝐿𝑖 = 0

⚫ Sanity check is utilized to examine whether the learning process is going well at initial state.

➔At initialization 𝑊 is small and all 𝑠 ≈ 0, thus 𝐿 = 𝑁class − 1

5

𝐿𝑖 = ෍

𝑗≠𝑦𝑖

൝
0 if 𝑠𝑦𝑖 ≥ 𝑠𝑗 + 1

𝑠𝑗 − 𝑠𝑦𝑖 + 1 otherwise
= ෍

𝑗≠𝑦𝑖

max 0, 𝑠𝑗 − 𝑠𝑦𝑖 + 1 Safety margin

Score of

wrong label

Score of

correct label
𝐿𝑖

𝑠𝑗

𝑠𝑦𝑖 − 1 𝑠𝑦𝑖

∞

𝐿 =
1

𝑁
෍

𝑖

𝐿𝑖 𝑓 𝑥𝑖 ,𝑊 , 𝑦𝑖 =
1

𝑁
෍

𝑖
𝐿𝑖 𝑊𝑥𝑖 , 𝑦𝑖

Korea Advanced Institute of Science and TechnologySeonghak KIM, hakk35@kaist.ac.kr

CS231n

⚫ Loss Function and Optimization

⚫ Loss Function: judge the performance of classifier

⚫ Regularization, 𝑅 𝑊 to prevent overfitting

where 𝜆 is regularization strength, which is hyperparameter.

⚫ L1 Regularization: 𝑅 𝑊 = σ𝑘,𝑙 𝑊𝑘,𝑙 , sparse weights

⚫ L2 Regularization (Weigh Decay): 𝑅 𝑊 = σ𝑘,𝑙𝑊𝑘,𝑙
2 , spread out weights

e.g.,

if 1, 0 , 𝑅L1 = 1 and 𝑅L2 = 1, thus both regularization have same value

if 0.5, 0.5 , 𝑅L1 = 1 and 𝑅L2 = 0.5, thus, 𝑅L2 has a smaller value when the weights spread out. → smaller regularization.

⚫ Elastic net (L1 + L2): 𝑅 𝑊 = σ𝑘,𝑙 𝛽𝑊𝑘,𝑙
2 + 𝑊𝑘,𝑙

⚫ Other regularization method: Dropout (randomly set some neurons to zero), Batch normalization

6

𝐿 =
1

𝑁
෍

𝑖

𝐿𝑖 𝑓 𝑥𝑖 ,𝑊 , 𝑦𝑖 + 𝜆𝑅 𝑊

Data Loss fitted by

training data

Regularization for

working well on test data

Korea Advanced Institute of Science and TechnologySeonghak KIM, hakk35@kaist.ac.kr

CS231n

⚫ Loss Function and Optimization

⚫ Loss Function: judge the performance of classifier

⚫ Softmax-Cross Entropy Loss (Multinomial Logistic Regression)

⚫ The scores is expressed by “unnormalized log probabilities” of the classes, 𝑠 = 𝑓 𝑥𝑖 , 𝑊 .

⚫ Unnormalized log probabilities, 𝑠𝑗 → exp 𝑠𝑗 → normalize, exp 𝑠𝑗 /σ𝑗 exp 𝑠𝑗 ; probabilities

⚫ 𝑃 = 1, correct class → 𝐿𝑖 = 0

⚫ 𝑃 = 0, wrong class → 𝐿𝑖 → ∞

⚫ Sanity check

➔At initialization 𝑊 is small and all 𝑠 ≈ 0, thus 𝐿 = − log 1/𝑁class

⚫ Softmax vs SVM

⚫ SVM has robustness by safety margin (Loss is unchangeable).

⚫ Softmax try to increase the probability of correct class (Loss is changeable).

⚫ Optimization: find the Weights that loss is minimized

⚫ Gradient Descent

⚫ 𝛼 is learning rate, which is hyperparameter.

⚫ Stochastic Gradient Descent (SGD)

⚫ Minibatch gradient descent: approximate sum using a minibatch (part of the training set), not full sum, which is expensive.

7

𝐿𝑖 = − log𝑃 𝑌 = 𝑦𝑖 𝑋 = 𝑥𝑖 = − log
𝑒𝑠𝑦𝑖

σ𝑗 𝑒
𝑠𝑗

Softmax function

𝟎 ≤ 𝑷 ≤ 𝟏

∞

𝑊 = 𝛼 ⋅
𝜕𝐿

𝜕𝑊

Korea Advanced Institute of Science and TechnologySeonghak KIM, hakk35@kaist.ac.kr

CS231n

⚫ Backpropagation and Neural Networks

⚫ Backpropagation

⚫ Compute the gradient of the loss function with respect to the inputs using the Local gradient (Jacobian

matrix) memorized in forward pass.

⚫ Gate

⚫ Add (+) gate: gradient distributor

⚫ Max gate: gradient router distributing only gradient of max value

⚫ Mul gate: gradient switcher

⚫ At branches, each gradients is added.

⚫ Neural Networks (with several classifier)

⚫ One hidden layer is responsible for one feature.

⚫ Activation functions (non-linearities)

⚫ Sigmoid, 𝜎 𝑥 = 1/ 1 + 𝑒−𝑥

⚫ ReLU, 𝜎 𝑥 = max 0, 𝑥

⚫ Leaky ReLU, 𝜎 𝑥 = max 0.01𝑥, 𝑥

⚫ Maxout, 𝜎 𝑥 = max 𝑤1
T𝑥 + 𝑏1, 𝑤2

T𝑥 + 𝑏2

⚫ ELU,

⚫ “Fully-connected” Layers, FC Layer (connect to the entire input nodes.)

⚫ The more Layers, the better capacity.

⚫ To prevent overfitting, regularization strength have to adjust, do not make small number of layers.

8

𝜎 𝑥 = ቊ
𝑥 𝑥 ≥ 0

𝛼 𝑒𝑥 − 1 𝑥 < 0

Korea Advanced Institute of Science and TechnologySeonghak KIM, hakk35@kaist.ac.kr

CS231n

⚫ Convolutional Neural Networks (CNN)

⚫ Convolutional Neural Networks

⚫ Consist of the Convolution Layer, Pooling Layer and FC Layer.

⚫ Do not need to stretch into column vector 𝑁 × 1 , it preserve spatial structure 𝐻 ×𝑊 ×𝐷

⚫ Convolve the filter with the image, i.e., slide the image spatially, computing dot products 𝑤T𝑥 .

⚫ One filter (share the same weights) make one activation map

⚫ Output size: 𝑁 − 𝐹 /stride + 1, where 𝑁 is input size and 𝐹 is filter size.

⚫ Using only the filter, the output size is smaller than input size, thus zero-padding, 𝐹 − 1 /2 is applied to preserve the

output size.

⚫ With filter, the shrinking too fast is not good, doesn’t work well. → for down-sampling, pooling layer!!

⚫ Convolution layer with 1 × 1 filter (to reduce computation cost by lower depth and for mapping)

⚫ Pooling layer for down-sampling

⚫ no weights and no padding

⚫ Preserve the depth of input matrix (only 1 filter)

⚫ Max pooling

⚫ It transfer the max value in the range to the activation map.

9

[Given image]

[filter]
1 number

1 number

[activation map]

Korea Advanced Institute of Science and TechnologySeonghak KIM, hakk35@kaist.ac.kr

CS231n

⚫ Training Neural Networks

⚫ Activation functions

⚫ Sigmoid, 𝜎 𝑥 = 1/ 1 + 𝑒−𝑥

⚫ Vanishing gradient make backpropagation be impossible.

⚫ Range [0,1] thus, not zero-centered (input, x is always positive) → slow convergence (∵ zig-zag path)

➔ The gradients on 𝑤𝑖 are always all positive or all negative.

⚫ tanh, 𝜎 𝑥 = tanh 𝑥

⚫ Range [-1, 1] thus, zero-centered

⚫ Vanishing gradient occurs

⚫ Rectified Linear Unit (ReLU), 𝜎 𝑥 = max 0, 𝑥

⚫ In positive region, vanishing gradient X ∵ 𝜕𝜎/𝜕𝑥 = 1 , but in negative region, vanishing gradient O.

⚫ Faster converge than sigmoid and tanh

⚫ Not zero-centered (can be solved by batch-normalizations)

10

𝑓 ෍
𝑖
𝑤𝑖𝑥𝑖 + 𝑏 →

𝜕𝑓

𝜕𝑤𝑖
= 𝑥𝑖 ≥ 0

𝜕𝐿

𝜕𝑤𝑖
=
𝜕𝐿

𝜕𝑓

𝜕𝑓

𝜕𝑤𝑖
=
𝜕𝐿

𝜕𝑓
𝑥𝑖 ⇒ sign

𝜕𝐿

𝜕𝑤𝑖
= sign

𝜕𝐿

𝜕𝑓

∴
𝜕𝐿

𝜕𝑤1
,
𝜕𝐿

𝜕𝑤2
, … ,

𝜕𝐿

𝜕𝑤𝑖
≥ 0 or ≤ 0

[Ideal gradient path]

[zig-zag path]

Korea Advanced Institute of Science and TechnologySeonghak KIM, hakk35@kaist.ac.kr

CS231n

⚫ Training Neural Networks

⚫ Activation functions

⚫ Leaky ReLU,𝜎 𝑥 = max 0.01𝑥, 𝑥

⚫ vanishing gradient X ∵ 𝜕𝜎/𝜕𝑥 = 1, 𝑥 > 0 𝜕𝜎/𝜕𝑥 = 0.01, 𝑥 < 0

⚫ Faster converge than sigmoid and tanh

⚫ Parametric Rectifier (PReLU), 𝜎 𝑥 = max 𝛼𝑥, 𝑥

⚫ 𝛼 is learned through the backpropagation.

⚫ Exponential Linear Units (ELU)

⚫ Closer to zero-mean outputs

⚫ Maxout, 𝜎 𝑥 = max 𝑤1
T𝑥 + 𝑏1, 𝑤2

T𝑥 + 𝑏2
⚫ Vanishing gradient X

⚫ Doubles the number of parameters

⚫ Data Preprocessing

⚫ Original data → zero-centered data (to alleviate the slow convergence) → normalized data, divide standard

⚫ Zero-centered data is only used for images

⚫ Subtract the mean image, 𝐻 ×𝑊 × 𝐷 array (e.g. AlexNet)

⚫ Subtract per-channel mean, 3 numbers (e.g. VGGNet)

⚫ Principle component analysis (PCA): find space which maximize variance of projected data (dimension ↓).

⚫ Whitening: remove the overlap

11

𝜎 𝑥 = ቊ
𝑥 𝑥 ≥ 0

𝛼 𝑒𝑥 − 1 𝑥 < 0

Korea Advanced Institute of Science and TechnologySeonghak KIM, hakk35@kaist.ac.kr

CS231n

⚫ Training Neural Networks

⚫ Weight Initialization

⚫ When initial weights set zero, every neuron is having same operation, thus outputs are same things and all

gradient is same.

⚫ Small random number

⚫ Gaussian with zero mean and 0.01 standard deviation, 𝑤 = 0.01 ∗ np. random. randn(D, H)

→Well work for small networks, not with deeper networks where all activation become zero, thus vanishing gradient occurs.

⚫ 1.0 instead of 0.01

→ The outputs become either -1 or 1, thus vanishing gradient occur too.

⚫ Xavier initialization

⚫ Divide the number of input, 𝑤 = np. random. randn in, out / np. sqrt in

⚫ The more number of input 𝑁 , the smaller initial weights 𝑤 .

⚫ It is good performance when using tanh activation function, but breaks when using ReLU.

⚫ He et al. [2015]

⚫ Divide the half of input number, 𝑤 = np. random. randn in, out / np. sqrt in/2

⚫ Well work when using ReLU.

12

∴ initialization too small: activation become zero → vanishing gradients

Initialization too big: activation saturate → vanishing gradients

Korea Advanced Institute of Science and TechnologySeonghak KIM, hakk35@kaist.ac.kr

CS231n

⚫ Training Neural Networks

⚫ Batch Normalization

⚫ Make layer output in unit gaussian range before entering into following layer as input

⚫ Remove the instability (e.g., vanishing gradient)

⚫ Differentiable function → Backpropagation is okay.

⚫ Insert after FC Layer or Conv Layer and before activation function

⚫ FC Layer: per each dimension (feature elements), average and variance are independently computed.

⚫ Conv Layer: per activation map (channel), average and variance are computed.

⚫ Squash the range according need of batch normalization

⚫ 𝛾 (scaling) and 𝛽 (shift) are determined by learning

⚫ If 𝛾 = Var 𝑥(𝑘) and 𝛽 = average 𝑥(𝑘) , normalization effect X → identity mapping

⚫ Higher learning rates and reduced dependence on initialization

⚫ Act as regularization and reduce the need for dropout

⚫ At test time, moving averages (i.e., weighted averages) during at training time is used.

13

ො𝑥 𝑘 =
𝑥(𝑘) − average 𝑥(𝑘)

Var 𝑥(𝑘)

𝑦(𝑘) = 𝛾(𝑘) ො𝑥 𝑘 + 𝛽(𝑘)

𝜇𝐵 =
1

𝑚
෍

𝑖=1

𝑚

𝑥𝑖

[mini-batch mean]

𝜎𝐵
2 =

1

𝑚
෍

𝑖=1

𝑚

𝑥𝑖 − 𝜇𝐵
2

[mini-batch variance]

ො𝑥𝑖 =
𝑥𝑖 − 𝜇𝐵

𝜎𝐵
2 + 𝜖

[normalize]

𝑦𝑖 = 𝛾ො𝑥𝑖 + 𝛽

[scale and shift]

Korea Advanced Institute of Science and TechnologySeonghak KIM, hakk35@kaist.ac.kr

CS231n

⚫ Training Neural Networks

⚫ Hyperparameter Optimization

⚫ Hyperparameter

⚫ Network architecture (i.e., number of hidden layer and node)

⚫ Learning rate

⚫ Regularization

⚫ Cross-validation strategy

⚫ Coarse → Fine

⚫ Setting in log scale (e.g., reg = 10 ∗∗ unifrom −5, 5)

⚫ Random Search vs Grid Search

⚫ Random Search: consider the importance of each parameter

⚫ Grid Search: equal interval → hard to find optimized parameters

14

Korea Advanced Institute of Science and TechnologySeonghak KIM, hakk35@kaist.ac.kr

CS231n

⚫ Training Neural Networks

⚫ First–Order Optimization for parameters (i.e., weights)

⚫ Stochastic Gradient Descent (SGD)

⚫ loss changes quickly in one direction (sensitive) and slowly in another (insensitive) → zig-zag path ∴ slow convergence

⚫ It is expressed by “high condition number” which is ratio of largest to smallest singular value of Hessian matrix.

⚫ Local minima or saddle point (more common in high dimension) → zero gradients, thus gradient descent stop.

15

Optimized weights

Steep direction

(sensitive)

shallow direction

(insensitive)

Given weights

Korea Advanced Institute of Science and TechnologySeonghak KIM, hakk35@kaist.ac.kr

CS231n

⚫ Training Neural Networks

⚫ First–Order Optimization for parameters (i.e., weights)

⚫ SGD + Momentum

where 𝜌 is fiction coefficient (hyperparameter), which reduce the velocity, typically set as 0.9 or 0.99

⚫ Steep direction → high velocity, thus sign is rapidly changeable. ∴ velocity is damped.

⚫ Shallow direction → the velocity is built up.

⚫ Nesterov Momentum (Nesterov Accelerated Gradient, NAG)

⚫ At the spot after momentum step (velocity step), set gradient vector.

16

𝑣𝑡+1 = 𝜌𝑣𝑡 + 𝛼∇𝑓 𝑥𝑡
𝑥𝑡+1 = 𝑥𝑡 − 𝑣𝑡+1

Alleviate high condition

number problem

Velocity

Gradient

Actual step

[Momentum]

Velocity

Gradient

Actual step

[Nesterove Momentum]

Korea Advanced Institute of Science and TechnologySeonghak KIM, hakk35@kaist.ac.kr

CS231n

⚫ Training Neural Networks

⚫ First–Order Optimization for parameters (i.e., weights)

⚫ Nesterov Momentum (Nesterov Accelerated Gradient, NAG)

⚫ Transposition of 𝑥𝑡 + 𝜌𝑣𝑡 into ෤𝑥𝑡

⚫ AdaGrad (per-parameter adoptive learning rate method)

⚫ Different learning rate is applied per parameters.

⚫ “cache” is introduced; cache is always increased. ∵ positive

where 10−7 is for preventing from dividing zero.

⚫ Steep gradient → high cache → small learning rate 𝛼 → update speed is lowered.

⚫ Gradual gradient → small cache → large learning rate 𝛼 → update speed is increased.

⚫ Over long time, learning rate 𝛼 become zero (∵ cache ⇑).

17

𝑣𝑡+1 = 𝜌𝑣𝑡 + 𝛼∇𝑓 𝑥𝑡 + 𝜌𝑣𝑡
𝑥𝑡+1 = 𝑥𝑡 − 𝑣𝑡+1

෤𝑥𝑡+1 = 𝑥𝑡+1 + 𝜌𝑣𝑡+1
= 𝑥𝑡 + 1 + 𝜌 𝑣𝑡+1
= ෤𝑥𝑡 − 𝜌𝑣𝑡 + 1 + 𝜌 𝑣𝑡+1

∴ 𝑣𝑡+1 = 𝜌𝑣𝑡 + 𝛼∇𝑓 ෤𝑥𝑡
෤𝑥𝑡+1 = ෤𝑥𝑡 − 𝜌𝑣𝑡 + 1 + 𝜌 𝑣𝑡+1

= ෤𝑥𝑡 + 𝑣𝑡+1 + 𝜌 𝑣𝑡+1 − 𝑣𝑡

cache += gradient x ∗ gradient x
𝑥 −= 𝛼 ∗ gradient x / sqrt cache + 10−7

Korea Advanced Institute of Science and TechnologySeonghak KIM, hakk35@kaist.ac.kr

CS231n

⚫ Training Neural Networks

⚫ First–Order Optimization for parameters (i.e., weights)

⚫ RMSProp

⚫ Prevent learning rate from being zero (𝛼 ↛ 0)

⚫ “Decay rate” that is hyperparameter is introduced.

⚫ Adam: RMSProp with Momentum

where 𝛽1 and 𝛽2 are hyperparameters and “unbias” is for that first and second moment start at zero.

⚫ Learning rate 𝛼

⚫ Learning rate decay over time

⚫ Step decay: by half every few epochs

⚫ Exponential decay: 𝛼 = 𝛼0 exp −𝑘𝑡

⚫ 1/t decay: 𝛼 = 𝛼0/ 1 + 𝑘𝑡

18

cache = 𝐝𝐞𝐜𝐚𝐲 𝐫𝐚𝐭𝐞 ∗ cache + 1 − 𝐝𝐞𝐜𝐚𝐲 𝐫𝐚𝐭𝐞 ∗ gradient x ∗ gradient x
𝑥 −= 𝛼 ∗ gradient x / sqrt cache + 10−7

moment1st = 𝛽1 ∗ moment
1st + 1 − 𝛽1 ∗ gradient x

moment2nd = 𝛽2 ∗ moment
2nd + 1 − 𝛽2 ∗ gradient x ∗ gradient x

unbias1st = moment1st/ 1 − 𝛽1 ∗∗ iter
unbias2nd = moment2nd/ 1 − 𝛽2 ∗∗ iter

−= 𝛼 ∗ unbias1st / sqrt unbias2nd + 10−7

Korea Advanced Institute of Science and TechnologySeonghak KIM, hakk35@kaist.ac.kr

CS231n

⚫ Training Neural Networks

⚫ Second–Order Optimization

⚫ Hessian as well as gradient are employed.

⚫ No hyperparameters (e.g., learning rate 𝛼)

⚫ Not proper to Deep Neural Network (∵ high computational cost by heavy Hessian matrix)

⚫ BGFS (Quasi-Newton method)

⚫ Instead of inverting the full Hessian, approximate inverse Hessian with rank 1; Low-rank approximations

⚫ L-BFGS (Limited memory BFGS)

⚫ Not form and store the full inverse Hessian

⚫ It is employed after disabling all sources of noise

⚫ Works very well in full batch with low stochasticity, but not in mini-batch.

⚫ Model Ensembles

⚫ After training several models independently, the results is obtained by averaging their results at test time.

⚫ Multiple snapshots (each result in the single model) can be averaged.

⚫ Polyak averaging: At test time, “the exponentially decaying average of the parameter” obtained at training

time (i.e., moving averages) is used. (ensembles between the parameters)

19

Korea Advanced Institute of Science and TechnologySeonghak KIM, hakk35@kaist.ac.kr

CS231n

⚫ Training Neural Networks

⚫ Regularization

⚫ Dropout: regarded as Ensemble

⚫ It is considered that each binary mask (according to dropout neuron location) is one model

⚫ At test time, the result have to multiply by dropout probability; compensated by scaling activations,

all neurons are active! (no drop out)

⚫ Inverted dropout: instead of multiply probability at test time, divide probability at training time.

⚫ Data Augmentation: deform image pixel

⚫ Horizontal Flips

⚫ Random crops and scales

⚫ Color Jitter) 1. PCA to [R, G, B]

2. sample a color offset along principal component directions

3. offset to all pixels

20

Korea Advanced Institute of Science and TechnologySeonghak KIM, hakk35@kaist.ac.kr

CS231n

⚫ CNN Architectures

⚫ LeNet-5 [LeCun et al., 1998]

⚫ AlexNet [Krizhevsky et al., 2012]

⚫ FC7 Layer: FC Layer just before classifier

⚫ Details

⚫ Activation function: ReLU

⚫ Norm Layers

⚫ Data augmentation

⚫ ZFNet

⚫ Smaller filter size, larger the number of filters than AlexNet

⚫ VGGNet

⚫ Fixed filter (3 × 3 CONV stride 1 with pad 1 and 2 × 2 MAX POOL stride 2)

⚫ Smaller filter size (3 × 3), deeper networks (non-linearities ↑ by more activation functions)

⚫ same effective receptive field: three 3 × 3 CONV = one 7 × 7 CONV

⚫ Have fewer parameters

21

Korea Advanced Institute of Science and TechnologySeonghak KIM, hakk35@kaist.ac.kr

CS231n

⚫ CNN Architectures

⚫ GoogleNet

⚫ Instead of FC layers, average pooling is used. → reduce parameters

⚫ “Inception” module

⚫ Local network topology: network within a network

⚫ Very expensive computation cost (∵ pooling layer preserve the depth of input, thus total depth grow at every layer)

➔ Bottleneck layers (yellow) that use 1 × 1 convolutions to preserve spatial dimensions and reduce depth is introduced.

(i.e., projects depth to lower dimension, the number of filter)

⚫ Auxiliary classification outputs give additional gradient at lower layers to prevent vanishing gradients.

22

Filter concatenation depth-wise

1 × 1 convolution 3 × 3 convolution 5 × 5 convolution 1 × 1 convolution

Previous Layer

Parallel filter operations

1 × 1 convolution 1 × 1 convolution 3 ×3 max pooling

Korea Advanced Institute of Science and TechnologySeonghak KIM, hakk35@kaist.ac.kr

CS231n

⚫ CNN Architectures

⚫ ResNet

⚫ Residual connections: skip connection

⚫ The more layer, the better performance unlike previous architectures (e.g., AlexNet, VGGNet)

⚫ Solution: copying the learned layers from the shallow model and setting the other layers to identity mapping.

⚫ Use layers to fit residual, 𝐹 𝑥 = 𝐻 𝑥 − 𝑥 (input data), which is variance about x, instead of 𝐻 𝑥 directly

⚫ If weights in residual block are zero, the block is identity mapping (not learned), thus other blocks are same in shallow model.

⚫ Stack residual blocks, which has two 3 × 3 CONV layers each.

⚫ Use global average pooling instead of FC layers at the end and only use FC 1000 to output classes

⚫ For deeper networks, use bottleneck (1 × 1 CONV) to reduce cost

⚫ Batch normalization (higher learning rate, drop out X) after every CONV layer

23

CONV

CONV

+

𝑥

𝐹 𝑥
(output)

𝐹 𝑥 + 𝑥

𝑥
(identity)

[Residual block]

For returning to

input depth

1 × 1 CONV

3 × 3 CONV

1 × 1 CONV

+

To reduce depth
bottleneck

Operation ↓

Korea Advanced Institute of Science and TechnologySeonghak KIM, hakk35@kaist.ac.kr

CS231n

⚫ CNN Architectures

⚫ Network in Network (NiN)

⚫ MLP (Multi Layer Perception), which stack FC Layers, within each CONV layers.

⚫ Wide Residual Networks [Zagoruyko et al. 2016]

⚫ Residuals are the important factor itself, not depth. → wider residual blocks (F × k filter instead of F)

⚫ Increasing width is more computationally efficient than depth.

⚫ ResNeXt

⚫ Increasing width of residual block by using several bottleneck (i.e., cardinality), which is similar to

inception module in GoogleNet, instead of single bottleneck

24

1 × 1 CONV

3 × 3 CONV

1 × 1 CONV

+

…

1 × 1 CONV

3 × 3 CONV

1 × 1 CONV

1 × 1 CONV

3 × 3 CONV

1 × 1 CONV

Several

bottleneck

+

Korea Advanced Institute of Science and TechnologySeonghak KIM, hakk35@kaist.ac.kr

CS231n

⚫ CNN Architectures

⚫ Deep Networks with Stochastic Depth

⚫ Vanishing gradient and training time ↓

⚫ Randomly drop a subset of layers, i.e., residual block in ResNet (similar to dropout, which drops the nodes randomly)

➔ some networks to identity connection

⚫ Use full network without dropping any subsets at test time

⚫ FractalNet

⚫ Residual connection X

⚫ Trained with dropping out sub-paths, but use full network at test time

⚫ Densely Connected Convolutional Networks (DCN?)

⚫ Dense blocks

⚫ Each layer is connected to every other layer in feedforward path

⚫ Vanishing gradient ↓

⚫ feature propagation ↑ , feature reuse ↑

(∵ output of each layer is used at other layer.)

⚫ Input image data is used at every layer

⚫ SqueezeNet

⚫ Fire modules

⚫ ‘Squeeze’ layer with 1 × 1 filters feeding → ‘expand’ layer with 1 × 1 and 3 × 3 filters

25

1 × 1 CONV

1 × 1 CONV

concat

1 × 1 CONV

concat

1 × 1 CONV

concat

input

[Dense Block]

Korea Advanced Institute of Science and TechnologySeonghak KIM, hakk35@kaist.ac.kr

CS231n

⚫ Recurrent Neural Network

⚫ Recurrent Neural Network, RNN

⚫ From input data at each time step, to “Hidden state”

⚫ Goal: predict a output vector at some time steps

⚫ where ℎ𝑡 is new state (updated hidden state), ℎ𝑡−1 is old state and 𝑥𝑡 is input vector at some time step.

⚫ The function, 𝑓𝑊 and its parameters, 𝑊 are same used at every time step (i.e., Re-use the same weight matrix

at every time step).

⚫ Many to Many: size(input) = size(output)

⚫ Through “Ground truth” at each step, Loss 𝑦𝑡 can be obtained separately. → σLoss𝑡

⚫ Many to One

⚫ The only output at the final hidden state (e.g., if step range [0, t], Loss 𝑦𝑡)

⚫ Sequence to Sequence (Many to One + One to Many): size(input) ≠ size(output)

⚫ Many to One: “Encode” input sequence in a single vector

⚫ One to Many: “Decode” output sequence from single input vector

26

ℎ𝑡 = 𝑓𝑊 ℎ𝑡−1, 𝑥𝑡

ℎ𝑡 = tanh 𝑊ℎℎℎ𝑡−1 +𝑊𝑥ℎ𝑥𝑡 𝑦𝑡 = 𝑊ℎ𝑦ℎ𝑡

output

RNN

input

ℎ𝑦

𝑥ℎ

ℎℎ

Korea Advanced Institute of Science and TechnologySeonghak KIM, hakk35@kaist.ac.kr

CS231n

⚫ Recurrent Neural Network

⚫ Recurrent Neural Network, RNN

⚫ Truncated Backpropagation

⚫ Forward and backward through sub-sequence of the sequence instead of whole sequence

⚫ Hidden states forward in time forever, but only backpropagate for some smaller number of steps (sub-sequence)

27

Loss Loss Loss

Sub-sequence Sub-sequence Sub-sequence

Hidden states forward

in time forever

Backpropagate for

only this sub-sequence

Korea Advanced Institute of Science and TechnologySeonghak KIM, hakk35@kaist.ac.kr

CS231n

⚫ Recurrent Neural Network

⚫ Image Captioning

⚫ CNN (for image process) + RNN (for sequence process)

⚫ At the final stage of CNN, FC 1000 and softmax are not used for class score, but dates just transfer to RNN

28

ℎ𝑡 = tanh 𝑊ℎℎℎ𝑡−1 +𝑊𝑥ℎ𝑥𝑡 +𝑊𝑖ℎ𝑣

CNN

output

RNN

input

ℎ𝑦

𝑥ℎ

ℎℎ𝑖ℎ

𝑣

Korea Advanced Institute of Science and TechnologySeonghak KIM, hakk35@kaist.ac.kr

CS231n

⚫ Recurrent Neural Network

⚫ Image Captioning with Attention

⚫ Generate each word according to a different spatial location

⚫ Distribution over locations + distribution over word

⚫ Soft attention

⚫ Summarize all locations, 𝑧 = 𝑝𝑎𝑎 + 𝑝𝑏𝑏 + 𝑝𝑐𝑐 + 𝑝𝑑𝑑 = σ𝑝𝑖𝑣𝑖 where 𝑝𝑘 is probability of distance and 𝑘 is feature

⚫ Better to use gradient descent

⚫ Hard attention

⚫ Only one location (that is the highest probability)

⚫ Gradient descent X

29

CNN ℎ0
Features: 𝐿 × 𝐷

𝑎1

ℎ1

Distribution over

L locations

𝑧1 𝑦1

Weighted features: σ𝑝𝑖𝑣𝑖 First word

𝑎2 𝑑1

Distribution

over vocab

ℎ2

𝑧2 𝑦1

Korea Advanced Institute of Science and TechnologySeonghak KIM, hakk35@kaist.ac.kr

CS231n

⚫ Recurrent Neural Network

⚫ Other RNNs

⚫ Multilayer RNNs with several hidden states (↔ single layer RNN)

⚫ At same layer, the same parameters, but different weights between other layers

⚫ Cell state (stacked hidden state) X

where 𝑙 denotes the layer number

⚫ Long Short Term Memory (LSTM) similar to ResNet in CONV

⚫ Cell state (stacked hidden state) O

⚫ 𝑖: input gate, whether write input 𝑥𝑡 (e.g., on:1 or off:0)

⚫ 𝑓: forget gate, how much forget cell state at previous step

⚫ 𝑜: output gate, how much reveal cell state, 𝑐𝑡
⚫ 𝑔: gate gate, how much include input cell (e.g., portion of input)

⚫ reduce vanishing gradients or exploding gradients because Backprop 𝑐𝑡 − 𝑐𝑡−1 → ⋯𝑐0 only elementwise multiplication by

𝑓(forget gate), which is changeable every step, no matrix (𝑊) which is unchangeable at every step and only one activation

function is applied.

cf., These occur in vanilla RNN because Backprop ℎ𝑡 → ℎ𝑡−1 → ⋯ → ℎ0 multiplies by weights 𝑊ℎℎ
T every RNN cells:

Vanishing, max singular value < 1 or Exploding, max singular value > 1 and activation function is applied every step

- Exploding gradients prevented by Gradient clipping

30

ℎ𝑡 = tanh 𝑊ℎℎℎ𝑡−1 +𝑊𝑥ℎ𝑥𝑡

[Gradient clipping]

norm =෍ grad ∗ grad

if norm > threshold: grad ∗= (threshold / norm)

𝑖
𝑓
𝑜
𝑔

=

𝜎
𝜎
𝜎

tanh

𝑊𝑙 ℎ𝑡−1
𝑙

ℎ𝑡
𝑙−1

𝑐𝑡
𝑙 = 𝑓⨀𝑐𝑡−1

𝑙 + 𝑖⨀𝑔

ℎ𝑡
𝑙 = 𝑜⨀tanh 𝑐𝑡

𝑙

Cell state

hidden state

ℎ𝑡
𝑙 = tanh 𝑊ℎℎ

𝑙 ℎ𝑡−1
𝑙 +𝑊ℎ∗ℎ

𝑙 ℎ𝑡
𝑙−1 = tanh𝑊𝑙 ℎ𝑡−1

𝑙

ℎ𝑡
𝑙−1

Input from previous

hidden state

Korea Advanced Institute of Science and TechnologySeonghak KIM, hakk35@kaist.ac.kr

CS231n

⚫ Segmentation; pixel (⟷ classification; image)

⚫ Semantic –

⚫ No objects, just pixels

⚫ don’t differentiate instances

⚫ Sliding windows

⚫ Classify center pixel on each small region (patch) extracted by input full image

⚫ Inefficient and no reusing shared features between overlapping patches

⚫ Fully Convolutional (FCN)

⚫ Down-sampling with max polling and strides is applied for lower cost.

⚫ Up-sampling (e.g., Nearest Neighbor, Bed of Nails) is used to restore the image size.

31

Full image

Each patch

overlapping

[sliding windows]

1 2

3 4

1 1

1 1

2 2

2 2

3 3

3 3

4 4

4 4

[Nearest Neighbor]

1 2

3 4

1 0

0 0

2

3 4

[Bed of Nails]

0

0 0

0

0 0

0

0 0

Korea Advanced Institute of Science and TechnologySeonghak KIM, hakk35@kaist.ac.kr

CS231n

⚫ Segmentation; pixel (⟷ classification; image)

⚫ Semantic –

⚫ Fully Convolutional (FCN)

⚫ Max unpooling that remember which element was max during down-sampling and use this position for up-sampling;

other positions fill zero (e.g., [(1,2,3,5)] → [5] →… → [output(5)] → [(0,0,0,output(5))]).

(∵ corresponding pairs of down-sampling and up-sampling layers)

⚫ Transpose convolution (Upconvolution, Fracctionally strided convolution and Backward strided convolution)

cf., backward in CONV = forward in UPCONV, forward in CONV = backward in UPCONV

32

input (weight)

for filter

Scalar values

Filter × input (weights)

Sum where

output overlaps

[Transpose Convolution]

𝑎
𝑏
→

𝑥
𝑦
𝑧
→

𝑎𝑥
𝑎𝑦
𝑎𝑧 + 𝑏𝑥

𝑏𝑦
𝑏𝑧

Input (weights)

Filter, 3 × 1 UPCONV

Output

Korea Advanced Institute of Science and TechnologySeonghak KIM, hakk35@kaist.ac.kr

CS231n

⚫ Multitask Loss

⚫ Classification + Localization

⚫ Classification

⚫ input image → class label

⚫ Measure: accuracy

⚫ Localization; regression

⚫ input image → box coordinates (x, y, w, h)

⚫ Measure: IOU (Intersection Over Union)

⚫ Human Pose Estimation

33

CNN

Box coordinates

Class scores

FC

Softmax Loss

L2 Loss

Classification head

Regression head

Correct label

Correct box

FC

[Classification + Localization]

CNN

Left foot coord. (x, y)

Right foot coord. (x, y)

Head top coord. (x, y)

⋮

L2 Loss

⋮

L2 Loss

L2 Loss

+ Loss

Correct left coord.

Correct head top coord.

FC

[Homan Pose Estimation]

Korea Advanced Institute of Science and TechnologySeonghak KIM, hakk35@kaist.ac.kr

CS231n

⚫ Object Detection; multiple object

⚫ As Regression

⚫ Many number of outputs

⚫ Dependent on the number of object 𝑁 → output number = 𝑁 × 4

⚫ e.g., 1 object → (𝑥, 𝑦, 𝑤, ℎ) / 2 objects → 𝑥1, 𝑦1, 𝑤1, ℎ1 𝑥2, 𝑦2, 𝑤2, ℎ2

⚫ Generally unknown number of object in advance

⚫ As Classification

⚫ Sliding windows

⚫ Apply CNN to each patch of the image and classifies each patch as object or background

⚫ Hugh number of patch (e.g., locations and scales) → cost ↑ (∵ CNN operations ↑)

➔ Region Proposals, which find blobby image regions that are likely to contain objects is introduced

⚫ Region-based CNN (R-CNN)

⚫ 2K Region proposals (i.e., regions of interest, RoI) are given from a selective search from input whole image.

⚫ Extracted regions have different size → image regions are warped to same size for feeding CNN input

⚫ Classify the regions with SVM (hinge loss)

⚫ Linear Regression for bounding box offsets (revision of region proposals)

34

RoI Warped RoI CNN

Bbox reg

SVM

Regions of interest
warp

For classification

For offsets of box

Korea Advanced Institute of Science and TechnologySeonghak KIM, hakk35@kaist.ac.kr

CS231n

⚫ Object Detection; multiple object

⚫ As Classification

⚫ Fast R-CNN

⚫ Forward whole image through CNN (↔ each region at R-CNN)

⚫ RoIs are extracted from feature map of image.

⚫ RoI pooling, which is similar to the max pooling to revise the image size for input of FC layer

⚫ After FC layer, the softmax and regression are applied.

⚫ Runtime dominated by region proposals: “bottle neck”

35

CNN
Feature

map

RoI

Revised RoIRoI pooling FCs

Softmax +

Linear reg

Liner reg

For classification

For offsets of box

Log loss +

L1 loss

Multitask loss

Korea Advanced Institute of Science and TechnologySeonghak KIM, hakk35@kaist.ac.kr

CS231n

⚫ Object Detection; multiple object

⚫ As Classification

⚫ Faster R-CNN

⚫ Solve the problem of bottleneck in Fast R-CNN

⚫ Add “Region Proposal Network, RPN” to predict RoI from features

- RPN classify object / not object

- RPN regress box coordinates

- Final classification score (object classes)

- Final box coordinates (offsets of box)

36

Same as Fast R-CNN

Added RPN

CNN
Feature

map

Revised RoI

RoI pooling

Classification loss

Regression loss

For class

For offsets of box

RoIRPN

Classification Loss

Regression Loss For box coord., RPN

To distinguish object, RPN

Korea Advanced Institute of Science and TechnologySeonghak KIM, hakk35@kaist.ac.kr

CS231n

⚫ Object Detection; multiple object

⚫ As Classification

⚫ YOLO (You Only Look Once), SSD (Single Shot Detection)

⚫ Without RoI, only one big CNN is applied.

⚫ Input image is divided into grid → making a set of base boxes centered at each grid cell.

⚫ Regress from each of the base boxes (red box) to a final box with [dx, dy, dh, dw, confidence (i.e., possibility to include

the object and accuracy of predicted thing by the box)]

cf., if there is not any object → confidence = 0, otherwise (i.e., exist objects), confidence = IoU between predicted box

and ground truth

⚫ Predict classification scores for each of classes (+ background as a class)

⚫ Segmentation; pixel (⟷ classification; image)

⚫ Instance – (semantic + detection)

⚫ Differentiate instances → pixel labeling in each instance

⚫ Mask R-CNN

⚫ Similar to Faster R-CNN (CNN-RPN-…)

⚫ Semantic segmentation for each RoI

37

Base boxes

