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BREIL Introduction KAIST

® Knowledge Distillation

® Previous works
A broad range of KD methods have been well studied but mostly for image classification.

Directly utilizing classification-based KD for - desirable performance X t1
® Ignore of the structured context among pixels

Task of predicting a label for each pixel
(i.e., semantic and instance segmentation)

=» Specialized KD methods for semantic segmentation!

Although existing segmentation-based KD employs structured spatial knowledge, this is generated
from individual data samples, ignoring cross-image semantic relations among pixels.

+ Quanquan Li et al., CVPR, 2017
1 Yifan Liu et al., TPAMI, 2020
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BREIL Introduction KAIST

® Contributions

® Global pixels relations across the various images
Pixel-to-pixel distillation
Pixel-to-region distillation

I 1l i
eol3

. S3 ol3 S5 o3
t2 Mimic 52 * t; Mimic ®-. s
< 1mic 1
® e <::' y e Y t} Q:l »
L) L ] L [ ]
71 Sa ty Sy
(a) Intra-image relational KD. (b) Cross-image relational KD.

Figure 1. Overview of intra-image (left) and our proposed cross-
image relational distillation (right). The circles (® or ®) with the
same color denote pixel embeddings from the identical image. ;
and s; represent the pixel embeddings of the i-th pixel location
tagged in an image from the teacher and student, respectively. The
dotted line (— —) shows the similarity relationship between two

pixels. The circles and lines construct a relational graph. + Quanquan Li etal,, CVPR, 2017

1 Yifan Liu et al., TPAMI, 2020
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BREIL Method KAIST

® Notations

® Segmentation

Feature extractor, F € RAxWxd
Classifier, F » Z € RA*XWxC Each pixel’s logit after softmax

® L oss functions

Conventional segmentation 10ss, Lse, = 1 YW1 CE(0(Zpw) Yiw )~ Ground-truth label

HXW
Zhw Zi{w
Pixel-wise logit distillation, L4 = Zh v 1KL( ( )II ( — )

Soft class probabilities from student and teacher

=>» (—) Only address pixel-wise predictions independently but neglect semantic relations between pixels.
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BREIL Method KAIST

® Cross-Image Relational KD (CIRKD)

® Pixel-to-Pixel Distillation
Mini-batch-based distillation

® Mini-batch, {x,}}_, — feature maps, {F, € RF>*Wxd}N_ = (F, € RA*4N_, (—) batch size per GPU of
® Cross-image pair-wise similarity matrix, S; ; = F;F' € R4*4 segmentation is often small
\ -> dependencies among
‘oS T th . f
S T\ _1lya Sijla;: \ 1 . [ Sijlas a'™ row vector pixels from global images |
® Lpzp(Si)Sij) = 72a=1 KL (0 (]T> He (]T))
Mini-batch-based Pixel-to-pixel 10ss, Lyatch p2p = 12 1£p2p(Sf],ST
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[Overview of mini-batch based pixel-to-pixel distillation]
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BREIL Method KAIST

* Motivated by self-supervised learning

® Cross-Image Relational KD (CIRKD)

® Pixel-to-Pixel Distillation

Memory-based distillation
@ Pixel embeddings from the past mini-batches are stored in the memory bank*

® Class-ware pixel queue, @, € REXNpxd
N,,: number of pixel embeddings per class, d: embedding size

® Input image, x,, — feature embeddings, F;,F;] € R4x4
® Anchors F;, F] and class-balanced sample K, contrastive embeddings {v; € lRid}Ik(il randomly from Q,,

— Kpxd
oy, = [vl,vz, ...,va] € R

® Similarity matrix between the anchors and contrastive embeddings, P= F,V,] € R4*Kp

S T
Memory-based Pixel-to-Pixel 10ss, Lyemory p2p = % 4_ KL <o (%) ||o (%))
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BREIL Appendix 2Ll 51

® *Memory bank in self-supervised learning

r embedding dim, d
. - Memory bank

[images in past batch]

Random sampled

[negative]

[positive]

. D embedding dim, d

[image] [anChor]
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BREIL Appendix KAIST

® Memory bank in segmentation

B

first-in-first-out

[new image]
Iter+=1

embedding dim, d
+  Memory bank

[image in past batch]

Class-balanced samples

—_
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BREIL Method KAIST

* Motivated by self-supervised learning

® Cross-Image Relational KD (CIRKD)

® Pixel-to-Region Distillation

Memory-based distillation

® More representative region embeddings are stored in the memory bank*
* by averagely pooling all the pixel embeddings belonging to class c in a single image

® Region queue, Q, € RE*Nrxd
e N,: number of region embeddings per class, d: embedding size

® sample K, contrastive region embeddings {r; € R%}7, randomly from Q, -V, = [ry, 15, ..., 7% | € REr*¢

® Pixel-to-region similarity matrix, R = F,V,f € RA*Kr

S
Ra,

T
Memory-based Pixel-to-Pixel 10ss, Lyemory par = % 4_ KL (0 (T) ||o (RT“>)
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BREIL Method KAIST

* Motivated by self-supervised learning

® Cross-Image Relational KD (CIRKD)
® Overall framework

Lcirkp = Lseg + Lig + aLbatch_pr + IBLmemory_pr + VLmemory_er Cam(chamve, edianilod
® If d° # d7, projection head is attached to the student model

Teacher pixel-to-pixel
sipilag trix

Teacher pixel embeddings

—
Teacher pixel-to-region

}
1
1
1
1
' . . .
\ simi trix

gion mask o)

m

L
n

Enqueue

Knowledge alignment

Student pixel-to-region
similarity matrix

Student pixel-to-pixel

® : Element-wise multiplication ~ GAP: Global Average Pooling @: Dot product

[Overview of memory-based pixel-to-pixel and pixel-to-region distillation]
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BREIL Experiments 2% 500

® Cityscapes
® mloU performance

mloU (%)
Method Params (M) | FLOPs (G) Val Test
T: DeepLabV3-Res101 61.1M 2371.7G 78.07 77.46
S: DeepLabV3-Res18 74.21 73.45
+SKD [20] 75.42  74.06
+IFVD [35] 13.6M 572.0G 75.59 74.26
+CWD [30] 75.55 74.07
+CIRKD (ours) 76.38 75.05
S: DeepLabV3-Res18* 65.17 6547
+SKD [20] 67.08 66.71
+IFVD [35] 13.6M 572.0G 65.96 65.78
+CWD [30] 67.74 6735
+CIRKD (ours) 68.18 68.22
S: DeepLabV3-MBV2 73.12  72.36
+SKD [20] 73.82 73.02
+IFVD [35] 3.2M 128.9G 73.50 72.58
+CWD [30] 74.66 73.25
+CIRKD (ours) 75.42 74.03
S: PSPNet-Res18 72.55 72.29
+SKD [20] 73.29 7295
+IFVD [35] 12.9M 507.4G 73.71 72.83
+CWD [30] 74.36  73.57
+CIRKD (ours) 74.73  74.05

Table 1. Performance comparison with state-of-the-art distil-
lation methods over various student segmentation networks on
Cityscapes. * denotes that we do not initialize the backbone with
ImageNet [8] pre-trained weights. FLOPs is measured based on
the fixed size of 1024 x 2048. The bold number denotes the best
result in each block. We tag the teacher as T and the student as S.
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KAIST

BREIL Experiments

® Cityscapes
® Performance of individual class loU scores
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Figure 3. Illustration of individual class IoU scores over the student network DeepLabV3-ResNetl8 with baseline (w/o distillation),
state-of-the-art CWD and our proposed CIRKD on Cityscapes test set. Our CIRKD can consistently improve individual class IoU scores
compared to the baseline and CWD, especially for those challenging classes with low IoU scores.
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BREIL

® Cityscapes
® Qualitative results

Experiments

(a) Image (b) Student (¢) CWD (d) Ours (e) GT

Figure 4. Qualitative segmentation results on the validation set
of Cityscapes using the DeepLabV3-ResNetl8 network: (a) raw
images, (b) the original student network without KD, (c) channel-
wise distillation, (d) our method and (e) ground truth.
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BREIL Experiments 2% 500

® CamVid and Pascal VOC
® mloU performance

Method Params (M) | FLOPs (G) | Test mloU (%) Method Params (M) | FLOPs (G) | Val mloU (%)
T: DeepLabV3-Res101 61.1M 280.2G 69.84 T: DeepLabV3-Res101 61.1M 1294.6G 77.67
S: DeepLabV3-Res18 66.92 S: DeepLabV3-Res18 73.21
+SKD [20] 67.46 +SKD [20] 73.51
+IFVD [35] 13.6M 61.0G 67.28 +IFVD [35] 13.6M 305.0G 73.85
+CWD [30] 67.71 +CWD [30] 74.02
+CIRKD (ours) 68.21 +CIRKD (ours) 74.50
S: PSPNet-Res18 66.73 S: PSPNet-Res18 73.33
+SKD [20] 67.83 +SKD [20] 74.07
+IFVD [35] 12.9M 45.6G 67.61 +IFVD [35] 12.9M 260.0G 73.54
+CWD [30] 67.92 +CWD [30] 73.99
+CIRKD (ours) 68.65 +CIRKD (ours) 74.78

Table 2. Performance comparison with state-of-the-art distillation ~ Table 3. Performance comparison with state-of-the-art distillation

methods over various student segmentation networks on CamVid. ~ methods over various student segmentation networks on Pascal
FLOPs is measured based on the test size of 360 x 480. VOC. We report the FLOPs based on the crop size of 512 x 512
since the validation set does not have a fixed input size.
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BREIL

® Ablation study

® Lossterm

® Queue size

Experiments

Loss Baseline Distillation

Lid - v v v v v v
Lyatch P2p - - v - - - v
Lmemor'y p2p - - - v - v v
Lmemor'y -p2r - - - - v v v
mloU (%) 73.12 7426 7487 7511 7494 7526 7542

Table 4. Ablation study of distillation loss terms on Cityscapes

val. Baseline denotes the cross-entropy loss Ly, (Equ. (1)).

Larger queue provide more abundant and diverse embeddings
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Figure 6. Impact of the (a) pixel queue size N, per class and (b)
region queue size N, per class on Cityscapes val. 'Memory Cost’

denotes the occupied GPU memory size.
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BREIL

® Ablation study
® Temperature t

Experiments

® Number of contrastive embeddings

The similarity distribution with a larger dimension encode broader pixel dependencies.
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(a) Temperature 7 (b) Pixel-based Kp (c) Region-based K-

Figure 7. Impact of (a) the temperature 7 and (b) the number of
contrastive pixel embeddings K, and (c) the number of contrastive
region embeddings K on Cityscapes val.

KAIST
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BREIL Conclusion KAIST

® Contributions
® Cross-image relational KD transferring global pixel correlations

® Significant improvement on various segmentation datasets
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BREIL KAIST

Thank you.
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